冰川生成对对流云电状态和闪电活动的影响

IF 1.4 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES
N. E. Veremei, M. L. Toropova, Yu. A. Dovgaluk, A. M. Abshaev, Zh. M. Gekkieva, Yu. P. Mikhailovskii, A. A. Sin’kevich
{"title":"冰川生成对对流云电状态和闪电活动的影响","authors":"N. E. Veremei, M. L. Toropova, Yu. A. Dovgaluk, A. M. Abshaev, Zh. M. Gekkieva, Yu. P. Mikhailovskii, A. A. Sin’kevich","doi":"10.3103/s1068373923080071","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Based on the synthesis of the radar and LS8000 lightning detection network data, as well as the cloud resolving modeling, the effect of glaciogenic seeding on the electrical activity of a hail-hazardous cloud, which developed in the North Caucasus on May 14, 2012 was investigated. It has been proved that the introduction of a reagent leads to an increase in the frequency of intracloud discharges and in the total current of negative cloud-to-ground discharges. An increase in the peak current of the cloud-to-ground discharges of both polarities occurs in 10–15 minutes after the seeding termination. Seeding significantly increases the frequency of lightning discharges both in a cloud and a subcloud layer. As a result of seeding, the charge structure of a cloud turns out to be inverted: there is not a positive but a negative charge in its upper part.</p>","PeriodicalId":49581,"journal":{"name":"Russian Meteorology and Hydrology","volume":"6 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Glaciogenic Seeding on Electrical State and Lightning Activity of a Convective Cloud\",\"authors\":\"N. E. Veremei, M. L. Toropova, Yu. A. Dovgaluk, A. M. Abshaev, Zh. M. Gekkieva, Yu. P. Mikhailovskii, A. A. Sin’kevich\",\"doi\":\"10.3103/s1068373923080071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Based on the synthesis of the radar and LS8000 lightning detection network data, as well as the cloud resolving modeling, the effect of glaciogenic seeding on the electrical activity of a hail-hazardous cloud, which developed in the North Caucasus on May 14, 2012 was investigated. It has been proved that the introduction of a reagent leads to an increase in the frequency of intracloud discharges and in the total current of negative cloud-to-ground discharges. An increase in the peak current of the cloud-to-ground discharges of both polarities occurs in 10–15 minutes after the seeding termination. Seeding significantly increases the frequency of lightning discharges both in a cloud and a subcloud layer. As a result of seeding, the charge structure of a cloud turns out to be inverted: there is not a positive but a negative charge in its upper part.</p>\",\"PeriodicalId\":49581,\"journal\":{\"name\":\"Russian Meteorology and Hydrology\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Meteorology and Hydrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3103/s1068373923080071\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Meteorology and Hydrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3103/s1068373923080071","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要在综合雷达和 LS8000 闪电探测网络数据以及云解析模型的基础上,研究了冰川播种对 2012 年 5 月 14 日在北高加索地区形成的冰雹危害云的电活动的影响。研究证明,引入试剂会导致云内放电频率和云对地负放电总电流增加。在播种终止后 10-15 分钟内,两极云对地放电的峰值电流都会增加。播种会大大增加云和亚云层中的闪电放电频率。播种的结果是云的电荷结构发生倒置:云的上部不是正电荷而是负电荷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Influence of Glaciogenic Seeding on Electrical State and Lightning Activity of a Convective Cloud

Influence of Glaciogenic Seeding on Electrical State and Lightning Activity of a Convective Cloud

Abstract

Based on the synthesis of the radar and LS8000 lightning detection network data, as well as the cloud resolving modeling, the effect of glaciogenic seeding on the electrical activity of a hail-hazardous cloud, which developed in the North Caucasus on May 14, 2012 was investigated. It has been proved that the introduction of a reagent leads to an increase in the frequency of intracloud discharges and in the total current of negative cloud-to-ground discharges. An increase in the peak current of the cloud-to-ground discharges of both polarities occurs in 10–15 minutes after the seeding termination. Seeding significantly increases the frequency of lightning discharges both in a cloud and a subcloud layer. As a result of seeding, the charge structure of a cloud turns out to be inverted: there is not a positive but a negative charge in its upper part.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Meteorology and Hydrology
Russian Meteorology and Hydrology METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
1.70
自引率
28.60%
发文量
44
审稿时长
4-8 weeks
期刊介绍: Russian Meteorology and Hydrology is a peer reviewed journal that covers topical issues of hydrometeorological science and practice: methods of forecasting weather and hydrological phenomena, climate monitoring issues, environmental pollution, space hydrometeorology, agrometeorology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信