荧光显微镜数据中的引力细胞探测与跟踪

Nikomidisz Eftimiu, Michal Kozubek
{"title":"荧光显微镜数据中的引力细胞探测与跟踪","authors":"Nikomidisz Eftimiu, Michal Kozubek","doi":"arxiv-2312.03509","DOIUrl":null,"url":null,"abstract":"Automatic detection and tracking of cells in microscopy images are major\napplications of computer vision technologies in both biomedical research and\nclinical practice. Though machine learning methods are increasingly common in\nthese fields, classical algorithms still offer significant advantages for both\ntasks, including better explainability, faster computation, lower hardware\nrequirements and more consistent performance. In this paper, we present a novel\napproach based on gravitational force fields that can compete with, and\npotentially outperform modern machine learning models when applied to\nfluorescence microscopy images. This method includes detection, segmentation,\nand tracking elements, with the results demonstrated on a Cell Tracking\nChallenge dataset.","PeriodicalId":501321,"journal":{"name":"arXiv - QuanBio - Cell Behavior","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gravitational cell detection and tracking in fluorescence microscopy data\",\"authors\":\"Nikomidisz Eftimiu, Michal Kozubek\",\"doi\":\"arxiv-2312.03509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic detection and tracking of cells in microscopy images are major\\napplications of computer vision technologies in both biomedical research and\\nclinical practice. Though machine learning methods are increasingly common in\\nthese fields, classical algorithms still offer significant advantages for both\\ntasks, including better explainability, faster computation, lower hardware\\nrequirements and more consistent performance. In this paper, we present a novel\\napproach based on gravitational force fields that can compete with, and\\npotentially outperform modern machine learning models when applied to\\nfluorescence microscopy images. This method includes detection, segmentation,\\nand tracking elements, with the results demonstrated on a Cell Tracking\\nChallenge dataset.\",\"PeriodicalId\":501321,\"journal\":{\"name\":\"arXiv - QuanBio - Cell Behavior\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Cell Behavior\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.03509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Cell Behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.03509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动检测和跟踪显微图像中的细胞是计算机视觉技术在生物医学研究和临床实践中的主要应用。虽然机器学习方法在这些领域越来越常见,但经典算法在这两项任务中仍具有显著优势,包括更好的可解释性、更快的计算速度、更低的硬件要求和更稳定的性能。在本文中,我们提出了一种基于引力场的新方法,当应用于荧光显微镜图像时,它可以与现代机器学习模型竞争,并有可能优于现代机器学习模型。该方法包括检测、分割和跟踪等要素,并在细胞跟踪挑战赛数据集上进行了结果展示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gravitational cell detection and tracking in fluorescence microscopy data
Automatic detection and tracking of cells in microscopy images are major applications of computer vision technologies in both biomedical research and clinical practice. Though machine learning methods are increasingly common in these fields, classical algorithms still offer significant advantages for both tasks, including better explainability, faster computation, lower hardware requirements and more consistent performance. In this paper, we present a novel approach based on gravitational force fields that can compete with, and potentially outperform modern machine learning models when applied to fluorescence microscopy images. This method includes detection, segmentation, and tracking elements, with the results demonstrated on a Cell Tracking Challenge dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信