涉及带权重的变量$$s(\cdot )$$ -阶分数$$p(\cdot )$$ -拉普拉奇的退化基尔霍夫型问题

Pub Date : 2023-12-07 DOI:10.1007/s10998-023-00562-1
Mostafa Allaoui, Mohamed Karim Hamdani, Lamine Mbarki
{"title":"涉及带权重的变量$$s(\\cdot )$$ -阶分数$$p(\\cdot )$$ -拉普拉奇的退化基尔霍夫型问题","authors":"Mostafa Allaoui, Mohamed Karim Hamdani, Lamine Mbarki","doi":"10.1007/s10998-023-00562-1","DOIUrl":null,"url":null,"abstract":"<p>This paper deals with a class of nonlocal variable <i>s</i>(.)-order fractional <i>p</i>(.)-Kirchhoff type equations: </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{ll} {\\mathcal {K}}\\left( \\int _{{\\mathbb {R}}^{2N}}\\frac{1}{p(x,y)}\\frac{|\\varphi (x)-\\varphi (y)|^{p(x,y)}}{|x-y|^{N+s(x,y){p(x,y)}}} \\,dx\\,dy\\right) (-\\Delta )^{s(\\cdot )}_{p(\\cdot )}\\varphi (x) =f(x,\\varphi ) \\quad \\text{ in } \\Omega , \\\\ \\varphi =0 \\quad \\text{ on } {\\mathbb {R}}^N\\backslash \\Omega . \\end{array} \\right. \\end{aligned}$$</span><p>Under some suitable conditions on the functions <span>\\(p,s, {\\mathcal {K}}\\)</span> and <i>f</i>, the existence and multiplicity of nontrivial solutions for the above problem are obtained. Our results cover the degenerate case in the <span>\\(p(\\cdot )\\)</span> fractional setting.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A degenerate Kirchhoff-type problem involving variable $$s(\\\\cdot )$$ -order fractional $$p(\\\\cdot )$$ -Laplacian with weights\",\"authors\":\"Mostafa Allaoui, Mohamed Karim Hamdani, Lamine Mbarki\",\"doi\":\"10.1007/s10998-023-00562-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper deals with a class of nonlocal variable <i>s</i>(.)-order fractional <i>p</i>(.)-Kirchhoff type equations: </p><span>$$\\\\begin{aligned} \\\\left\\\\{ \\\\begin{array}{ll} {\\\\mathcal {K}}\\\\left( \\\\int _{{\\\\mathbb {R}}^{2N}}\\\\frac{1}{p(x,y)}\\\\frac{|\\\\varphi (x)-\\\\varphi (y)|^{p(x,y)}}{|x-y|^{N+s(x,y){p(x,y)}}} \\\\,dx\\\\,dy\\\\right) (-\\\\Delta )^{s(\\\\cdot )}_{p(\\\\cdot )}\\\\varphi (x) =f(x,\\\\varphi ) \\\\quad \\\\text{ in } \\\\Omega , \\\\\\\\ \\\\varphi =0 \\\\quad \\\\text{ on } {\\\\mathbb {R}}^N\\\\backslash \\\\Omega . \\\\end{array} \\\\right. \\\\end{aligned}$$</span><p>Under some suitable conditions on the functions <span>\\\\(p,s, {\\\\mathcal {K}}\\\\)</span> and <i>f</i>, the existence and multiplicity of nontrivial solutions for the above problem are obtained. Our results cover the degenerate case in the <span>\\\\(p(\\\\cdot )\\\\)</span> fractional setting.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10998-023-00562-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-023-00562-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论一类非局部变量 s(.)-order 分数 p(.)-Kirchhoff 型方程: $$\begin{aligned}\left\{ \begin{array}{ll} {\mathcal {K}}\left( \int _{\mathbb {R}}^{2N}}\frac{1}{p(x,y)}\frac{|\varphi (x)-\varphi (y)|^{p(x,y)}}{|x-y|^{N+s(x,y){p(x,y)}}}\(-Delta)^{s(\cdot)}_{p(\cdot)}\varphi (x) =f(x,\varphi ) \quad \text{ in }*Omega , *varphi =0 *quad *text{ on }{mathbb {R}}^N\backslash \Omega .\end{array}\(right.\end{aligned}$$在函数 \(p,s, {\mathcal {K}}\) 和 f 的一些合适条件下,我们得到了上述问题的非微观解的存在性和多重性。我们的结果涵盖了 \(p(\cdot )\) 分数设置中的退化情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A degenerate Kirchhoff-type problem involving variable $$s(\cdot )$$ -order fractional $$p(\cdot )$$ -Laplacian with weights

This paper deals with a class of nonlocal variable s(.)-order fractional p(.)-Kirchhoff type equations:

$$\begin{aligned} \left\{ \begin{array}{ll} {\mathcal {K}}\left( \int _{{\mathbb {R}}^{2N}}\frac{1}{p(x,y)}\frac{|\varphi (x)-\varphi (y)|^{p(x,y)}}{|x-y|^{N+s(x,y){p(x,y)}}} \,dx\,dy\right) (-\Delta )^{s(\cdot )}_{p(\cdot )}\varphi (x) =f(x,\varphi ) \quad \text{ in } \Omega , \\ \varphi =0 \quad \text{ on } {\mathbb {R}}^N\backslash \Omega . \end{array} \right. \end{aligned}$$

Under some suitable conditions on the functions \(p,s, {\mathcal {K}}\) and f, the existence and multiplicity of nontrivial solutions for the above problem are obtained. Our results cover the degenerate case in the \(p(\cdot )\) fractional setting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信