{"title":"涉及带权重的变量$$s(\\cdot )$$ -阶分数$$p(\\cdot )$$ -拉普拉奇的退化基尔霍夫型问题","authors":"Mostafa Allaoui, Mohamed Karim Hamdani, Lamine Mbarki","doi":"10.1007/s10998-023-00562-1","DOIUrl":null,"url":null,"abstract":"<p>This paper deals with a class of nonlocal variable <i>s</i>(.)-order fractional <i>p</i>(.)-Kirchhoff type equations: </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{ll} {\\mathcal {K}}\\left( \\int _{{\\mathbb {R}}^{2N}}\\frac{1}{p(x,y)}\\frac{|\\varphi (x)-\\varphi (y)|^{p(x,y)}}{|x-y|^{N+s(x,y){p(x,y)}}} \\,dx\\,dy\\right) (-\\Delta )^{s(\\cdot )}_{p(\\cdot )}\\varphi (x) =f(x,\\varphi ) \\quad \\text{ in } \\Omega , \\\\ \\varphi =0 \\quad \\text{ on } {\\mathbb {R}}^N\\backslash \\Omega . \\end{array} \\right. \\end{aligned}$$</span><p>Under some suitable conditions on the functions <span>\\(p,s, {\\mathcal {K}}\\)</span> and <i>f</i>, the existence and multiplicity of nontrivial solutions for the above problem are obtained. Our results cover the degenerate case in the <span>\\(p(\\cdot )\\)</span> fractional setting.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A degenerate Kirchhoff-type problem involving variable $$s(\\\\cdot )$$ -order fractional $$p(\\\\cdot )$$ -Laplacian with weights\",\"authors\":\"Mostafa Allaoui, Mohamed Karim Hamdani, Lamine Mbarki\",\"doi\":\"10.1007/s10998-023-00562-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper deals with a class of nonlocal variable <i>s</i>(.)-order fractional <i>p</i>(.)-Kirchhoff type equations: </p><span>$$\\\\begin{aligned} \\\\left\\\\{ \\\\begin{array}{ll} {\\\\mathcal {K}}\\\\left( \\\\int _{{\\\\mathbb {R}}^{2N}}\\\\frac{1}{p(x,y)}\\\\frac{|\\\\varphi (x)-\\\\varphi (y)|^{p(x,y)}}{|x-y|^{N+s(x,y){p(x,y)}}} \\\\,dx\\\\,dy\\\\right) (-\\\\Delta )^{s(\\\\cdot )}_{p(\\\\cdot )}\\\\varphi (x) =f(x,\\\\varphi ) \\\\quad \\\\text{ in } \\\\Omega , \\\\\\\\ \\\\varphi =0 \\\\quad \\\\text{ on } {\\\\mathbb {R}}^N\\\\backslash \\\\Omega . \\\\end{array} \\\\right. \\\\end{aligned}$$</span><p>Under some suitable conditions on the functions <span>\\\\(p,s, {\\\\mathcal {K}}\\\\)</span> and <i>f</i>, the existence and multiplicity of nontrivial solutions for the above problem are obtained. Our results cover the degenerate case in the <span>\\\\(p(\\\\cdot )\\\\)</span> fractional setting.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10998-023-00562-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-023-00562-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Under some suitable conditions on the functions \(p,s, {\mathcal {K}}\) and f, the existence and multiplicity of nontrivial solutions for the above problem are obtained. Our results cover the degenerate case in the \(p(\cdot )\) fractional setting.