具有右端点局部平滑势的矩阵值薛定谔算子的局部博格-马尔钦科唯一性定理

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
Tiezheng Li, Guangsheng Wei
{"title":"具有右端点局部平滑势的矩阵值薛定谔算子的局部博格-马尔钦科唯一性定理","authors":"Tiezheng Li, Guangsheng Wei","doi":"10.1080/00036811.2023.2290706","DOIUrl":null,"url":null,"abstract":"We present a new expression for the Weyl-Titchmarsh matrix-valued function of a self-adjoint matrix-valued Schrödinger operator defined on the interval [0,b), where 0<b≤∞. Let Hj=−d2dx2Im+Qj, j=1,2...","PeriodicalId":55507,"journal":{"name":"Applicable Analysis","volume":"49 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The local Borg-Marchenko uniqueness theorem for matrix-valued Schrödinger operators with locally smooth at the right endpoint potentials\",\"authors\":\"Tiezheng Li, Guangsheng Wei\",\"doi\":\"10.1080/00036811.2023.2290706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new expression for the Weyl-Titchmarsh matrix-valued function of a self-adjoint matrix-valued Schrödinger operator defined on the interval [0,b), where 0<b≤∞. Let Hj=−d2dx2Im+Qj, j=1,2...\",\"PeriodicalId\":55507,\"journal\":{\"name\":\"Applicable Analysis\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicable Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/00036811.2023.2290706\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00036811.2023.2290706","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们为定义在区间 [0,b](其中 0本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
The local Borg-Marchenko uniqueness theorem for matrix-valued Schrödinger operators with locally smooth at the right endpoint potentials
We present a new expression for the Weyl-Titchmarsh matrix-valued function of a self-adjoint matrix-valued Schrödinger operator defined on the interval [0,b), where 0
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applicable Analysis
Applicable Analysis 数学-应用数学
CiteScore
2.60
自引率
9.10%
发文量
175
审稿时长
2 months
期刊介绍: Applicable Analysis is concerned primarily with analysis that has application to scientific and engineering problems. Papers should indicate clearly an application of the mathematics involved. On the other hand, papers that are primarily concerned with modeling rather than analysis are outside the scope of the journal General areas of analysis that are welcomed contain the areas of differential equations, with emphasis on PDEs, and integral equations, nonlinear analysis, applied functional analysis, theoretical numerical analysis and approximation theory. Areas of application, for instance, include the use of homogenization theory for electromagnetic phenomena, acoustic vibrations and other problems with multiple space and time scales, inverse problems for medical imaging and geophysics, variational methods for moving boundary problems, convex analysis for theoretical mechanics and analytical methods for spatial bio-mathematical models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信