5 无奇数短周期平面图的着色重构

Pub Date : 2023-12-06 DOI:10.1002/jgt.23064
Daniel W. Cranston, Reem Mahmoud
{"title":"5 无奇数短周期平面图的着色重构","authors":"Daniel W. Cranston,&nbsp;Reem Mahmoud","doi":"10.1002/jgt.23064","DOIUrl":null,"url":null,"abstract":"<p>The coloring reconfiguration graph <math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n \n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${{\\mathscr{C}}}_{k}(G)$</annotation>\n </semantics></math> has as its vertex set all the proper <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-colorings of <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, and two vertices in <math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n \n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${{\\mathscr{C}}}_{k}(G)$</annotation>\n </semantics></math> are adjacent if their corresponding <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-colorings differ on a single vertex. Cereceda conjectured that if an <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>-vertex graph <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is <math>\n <semantics>\n <mrow>\n <mi>d</mi>\n </mrow>\n <annotation> $d$</annotation>\n </semantics></math>-degenerate and <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mi>d</mi>\n \n <mo>+</mo>\n \n <mn>2</mn>\n </mrow>\n <annotation> $k\\ge d+2$</annotation>\n </semantics></math>, then the diameter of <math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n \n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${{\\mathscr{C}}}_{k}(G)$</annotation>\n </semantics></math> is <math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>n</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $O({n}^{2})$</annotation>\n </semantics></math>. Bousquet and Heinrich proved that if <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is planar and bipartite, then the diameter of <math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n \n <mn>5</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${{\\mathscr{C}}}_{5}(G)$</annotation>\n </semantics></math> is <math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>n</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $O({n}^{2})$</annotation>\n </semantics></math>. (This proves Cereceda's Conjecture for every such graph with degeneracy 3.) They also highlighted the particular case of Cereceda's Conjecture when <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is planar and has no 3-cycles. As a partial solution to this problem, we show that the diameter of <math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n \n <mn>5</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${{\\mathscr{C}}}_{5}(G)$</annotation>\n </semantics></math> is <math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>n</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $O({n}^{2})$</annotation>\n </semantics></math> for every planar graph <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with no 3-cycles and no 5-cycles.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"5-Coloring reconfiguration of planar graphs with no short odd cycles\",\"authors\":\"Daniel W. Cranston,&nbsp;Reem Mahmoud\",\"doi\":\"10.1002/jgt.23064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The coloring reconfiguration graph <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>C</mi>\\n \\n <mi>k</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${{\\\\mathscr{C}}}_{k}(G)$</annotation>\\n </semantics></math> has as its vertex set all the proper <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-colorings of <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>, and two vertices in <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>C</mi>\\n \\n <mi>k</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${{\\\\mathscr{C}}}_{k}(G)$</annotation>\\n </semantics></math> are adjacent if their corresponding <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-colorings differ on a single vertex. Cereceda conjectured that if an <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>-vertex graph <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is <math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n <annotation> $d$</annotation>\\n </semantics></math>-degenerate and <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n \\n <mo>≥</mo>\\n \\n <mi>d</mi>\\n \\n <mo>+</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n <annotation> $k\\\\ge d+2$</annotation>\\n </semantics></math>, then the diameter of <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>C</mi>\\n \\n <mi>k</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${{\\\\mathscr{C}}}_{k}(G)$</annotation>\\n </semantics></math> is <math>\\n <semantics>\\n <mrow>\\n <mi>O</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>n</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $O({n}^{2})$</annotation>\\n </semantics></math>. Bousquet and Heinrich proved that if <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is planar and bipartite, then the diameter of <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>C</mi>\\n \\n <mn>5</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${{\\\\mathscr{C}}}_{5}(G)$</annotation>\\n </semantics></math> is <math>\\n <semantics>\\n <mrow>\\n <mi>O</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>n</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $O({n}^{2})$</annotation>\\n </semantics></math>. (This proves Cereceda's Conjecture for every such graph with degeneracy 3.) They also highlighted the particular case of Cereceda's Conjecture when <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is planar and has no 3-cycles. As a partial solution to this problem, we show that the diameter of <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>C</mi>\\n \\n <mn>5</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${{\\\\mathscr{C}}}_{5}(G)$</annotation>\\n </semantics></math> is <math>\\n <semantics>\\n <mrow>\\n <mi>O</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>n</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $O({n}^{2})$</annotation>\\n </semantics></math> for every planar graph <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> with no 3-cycles and no 5-cycles.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

着色重构图 Ck(G)${{{mathscr{C}}}_{k}(G)$ 的顶点集是 G$G$ 的所有适当 k$k$ 着色,如果 Ck(G)${{{mathscr{C}}}_{k}(G)$ 中的两个顶点在一个顶点上的 k$k$ 着色不同,则这两个顶点相邻。塞雷塞达猜想,如果一个 n$n$ 个顶点的图 G$G$ 是 d$d$ 退化的,并且 k≥d+2$k\ge d+2$,那么 Ck(G)${{{mathscr{C}}_{k}(G)$ 的直径是 O(n2)$O({n}^{2})$。布斯凯与海因里希证明,如果 G$G$ 是平面且双向的,那么 C5(G)${{{mathscr{C}}_{5}(G)$ 的直径是 O(n2)$O({n}^{2})$(这证明了对每一个退化度为 3 的此类图的塞雷塞达猜想。作为这个问题的部分解决方案,我们证明了对于每一个没有 3 循环和 5 循环的平面图 G$G$ ,C5(G)${{{mathscr{C}}}_{5}(G)$ 的直径都是 O(n2)$O({n}^{2})$ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
5-Coloring reconfiguration of planar graphs with no short odd cycles

The coloring reconfiguration graph C k ( G ) ${{\mathscr{C}}}_{k}(G)$ has as its vertex set all the proper k $k$ -colorings of G $G$ , and two vertices in C k ( G ) ${{\mathscr{C}}}_{k}(G)$ are adjacent if their corresponding k $k$ -colorings differ on a single vertex. Cereceda conjectured that if an n $n$ -vertex graph G $G$ is d $d$ -degenerate and k d + 2 $k\ge d+2$ , then the diameter of C k ( G ) ${{\mathscr{C}}}_{k}(G)$ is O ( n 2 ) $O({n}^{2})$ . Bousquet and Heinrich proved that if G $G$ is planar and bipartite, then the diameter of C 5 ( G ) ${{\mathscr{C}}}_{5}(G)$ is O ( n 2 ) $O({n}^{2})$ . (This proves Cereceda's Conjecture for every such graph with degeneracy 3.) They also highlighted the particular case of Cereceda's Conjecture when G $G$ is planar and has no 3-cycles. As a partial solution to this problem, we show that the diameter of C 5 ( G ) ${{\mathscr{C}}}_{5}(G)$ is O ( n 2 ) $O({n}^{2})$ for every planar graph G $G$ with no 3-cycles and no 5-cycles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信