Daniel W. Cranston, Reem Mahmoud
求助PDF
{"title":"5 无奇数短周期平面图的着色重构","authors":"Daniel W. Cranston, Reem Mahmoud","doi":"10.1002/jgt.23064","DOIUrl":null,"url":null,"abstract":"<p>The coloring reconfiguration graph <math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n \n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${{\\mathscr{C}}}_{k}(G)$</annotation>\n </semantics></math> has as its vertex set all the proper <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-colorings of <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, and two vertices in <math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n \n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${{\\mathscr{C}}}_{k}(G)$</annotation>\n </semantics></math> are adjacent if their corresponding <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-colorings differ on a single vertex. Cereceda conjectured that if an <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>-vertex graph <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is <math>\n <semantics>\n <mrow>\n <mi>d</mi>\n </mrow>\n <annotation> $d$</annotation>\n </semantics></math>-degenerate and <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mi>d</mi>\n \n <mo>+</mo>\n \n <mn>2</mn>\n </mrow>\n <annotation> $k\\ge d+2$</annotation>\n </semantics></math>, then the diameter of <math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n \n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${{\\mathscr{C}}}_{k}(G)$</annotation>\n </semantics></math> is <math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>n</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $O({n}^{2})$</annotation>\n </semantics></math>. Bousquet and Heinrich proved that if <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is planar and bipartite, then the diameter of <math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n \n <mn>5</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${{\\mathscr{C}}}_{5}(G)$</annotation>\n </semantics></math> is <math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>n</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $O({n}^{2})$</annotation>\n </semantics></math>. (This proves Cereceda's Conjecture for every such graph with degeneracy 3.) They also highlighted the particular case of Cereceda's Conjecture when <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is planar and has no 3-cycles. As a partial solution to this problem, we show that the diameter of <math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n \n <mn>5</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${{\\mathscr{C}}}_{5}(G)$</annotation>\n </semantics></math> is <math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>n</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $O({n}^{2})$</annotation>\n </semantics></math> for every planar graph <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with no 3-cycles and no 5-cycles.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"5-Coloring reconfiguration of planar graphs with no short odd cycles\",\"authors\":\"Daniel W. Cranston, Reem Mahmoud\",\"doi\":\"10.1002/jgt.23064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The coloring reconfiguration graph <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>C</mi>\\n \\n <mi>k</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${{\\\\mathscr{C}}}_{k}(G)$</annotation>\\n </semantics></math> has as its vertex set all the proper <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-colorings of <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>, and two vertices in <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>C</mi>\\n \\n <mi>k</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${{\\\\mathscr{C}}}_{k}(G)$</annotation>\\n </semantics></math> are adjacent if their corresponding <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-colorings differ on a single vertex. Cereceda conjectured that if an <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>-vertex graph <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is <math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n <annotation> $d$</annotation>\\n </semantics></math>-degenerate and <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n \\n <mo>≥</mo>\\n \\n <mi>d</mi>\\n \\n <mo>+</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n <annotation> $k\\\\ge d+2$</annotation>\\n </semantics></math>, then the diameter of <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>C</mi>\\n \\n <mi>k</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${{\\\\mathscr{C}}}_{k}(G)$</annotation>\\n </semantics></math> is <math>\\n <semantics>\\n <mrow>\\n <mi>O</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>n</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $O({n}^{2})$</annotation>\\n </semantics></math>. Bousquet and Heinrich proved that if <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is planar and bipartite, then the diameter of <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>C</mi>\\n \\n <mn>5</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${{\\\\mathscr{C}}}_{5}(G)$</annotation>\\n </semantics></math> is <math>\\n <semantics>\\n <mrow>\\n <mi>O</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>n</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $O({n}^{2})$</annotation>\\n </semantics></math>. (This proves Cereceda's Conjecture for every such graph with degeneracy 3.) They also highlighted the particular case of Cereceda's Conjecture when <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is planar and has no 3-cycles. As a partial solution to this problem, we show that the diameter of <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>C</mi>\\n \\n <mn>5</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${{\\\\mathscr{C}}}_{5}(G)$</annotation>\\n </semantics></math> is <math>\\n <semantics>\\n <mrow>\\n <mi>O</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>n</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $O({n}^{2})$</annotation>\\n </semantics></math> for every planar graph <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> with no 3-cycles and no 5-cycles.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
引用
批量引用