传播者的费曼-戴森图解扰动扩展的失败

So Hirata, Ireneusz Grabowski, Rodney J. Bartlett
{"title":"传播者的费曼-戴森图解扰动扩展的失败","authors":"So Hirata, Ireneusz Grabowski, Rodney J. Bartlett","doi":"arxiv-2312.03157","DOIUrl":null,"url":null,"abstract":"Using a general-order many-body Green's-function method for molecules, we\nillustrate numerically three pathological behaviors of the Feynman-Dyson\ndiagrammatic perturbation expansion of one-particle many-body Green's functions\nas electron propagators. First, the perturbation expansion of the\nfrequency-dependent self-energy is nonconvergent at the exact self-energy in\nwide domains of frequency. Second, the Dyson equation with an odd-order\nself-energy has a qualitatively wrong shape and, as a result, most of their\nsatellite roots are complex and nonphysical. Third, the Dyson equation with an\neven-order self-energy has an exponentially increasing number of roots as the\nperturbation order is raised, which quickly exceeds the correct number of\nroots. Infinite partial summation of diagrams by vertex or edge modification\nexacerbates these problems. Not only does the nonconvergence render\nhigher-order perturbation theories useless for satellite roots, but it also\ncalls into question the validity of their combined use with the ans\\\"{a}tze\nrequiring the knowledge of all poles and residues. Such ans\\\"{a}tze include the\nGalitskii-Migdal formula, self-consistent Green's-function methods,\nLuttinger-Ward functional, and some models of the algebraic diagrammatic\nconstruction.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Failures of the Feynman-Dyson diagrammatic perturbation expansion of propagators\",\"authors\":\"So Hirata, Ireneusz Grabowski, Rodney J. Bartlett\",\"doi\":\"arxiv-2312.03157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using a general-order many-body Green's-function method for molecules, we\\nillustrate numerically three pathological behaviors of the Feynman-Dyson\\ndiagrammatic perturbation expansion of one-particle many-body Green's functions\\nas electron propagators. First, the perturbation expansion of the\\nfrequency-dependent self-energy is nonconvergent at the exact self-energy in\\nwide domains of frequency. Second, the Dyson equation with an odd-order\\nself-energy has a qualitatively wrong shape and, as a result, most of their\\nsatellite roots are complex and nonphysical. Third, the Dyson equation with an\\neven-order self-energy has an exponentially increasing number of roots as the\\nperturbation order is raised, which quickly exceeds the correct number of\\nroots. Infinite partial summation of diagrams by vertex or edge modification\\nexacerbates these problems. Not only does the nonconvergence render\\nhigher-order perturbation theories useless for satellite roots, but it also\\ncalls into question the validity of their combined use with the ans\\\\\\\"{a}tze\\nrequiring the knowledge of all poles and residues. Such ans\\\\\\\"{a}tze include the\\nGalitskii-Migdal formula, self-consistent Green's-function methods,\\nLuttinger-Ward functional, and some models of the algebraic diagrammatic\\nconstruction.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.03157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.03157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用分子的一般阶多体格林函数方法,我们在数值上证明了作为电子传播者的单粒子多体格林函数的费曼-戴森迪亚图式微扰展开的三种病理行为。首先,频率相关自能的扰动展开在宽频域中与精确自能不收敛。其次,具有奇数阶自能的戴森方程在性质上具有错误的形状,因此,其大部分卫星根是复杂和非物理的。第三,随着扰动阶数的增加,具有偶阶自能的戴森方程的根数呈指数增长,很快就超过了正确的根数。通过顶点或边缘修改对图进行无限部分求和会加剧这些问题。不收敛性不仅使高阶扰动理论对卫星根毫无用处,而且使其与要求了解所有极点和残差的ans/{a}tz结合使用的有效性受到质疑。这些方法包括伽利茨基-米格达尔公式、自洽格林函数方法、卢廷格-沃德函数以及一些代数图解构造模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Failures of the Feynman-Dyson diagrammatic perturbation expansion of propagators
Using a general-order many-body Green's-function method for molecules, we illustrate numerically three pathological behaviors of the Feynman-Dyson diagrammatic perturbation expansion of one-particle many-body Green's functions as electron propagators. First, the perturbation expansion of the frequency-dependent self-energy is nonconvergent at the exact self-energy in wide domains of frequency. Second, the Dyson equation with an odd-order self-energy has a qualitatively wrong shape and, as a result, most of their satellite roots are complex and nonphysical. Third, the Dyson equation with an even-order self-energy has an exponentially increasing number of roots as the perturbation order is raised, which quickly exceeds the correct number of roots. Infinite partial summation of diagrams by vertex or edge modification exacerbates these problems. Not only does the nonconvergence render higher-order perturbation theories useless for satellite roots, but it also calls into question the validity of their combined use with the ans\"{a}tze requiring the knowledge of all poles and residues. Such ans\"{a}tze include the Galitskii-Migdal formula, self-consistent Green's-function methods, Luttinger-Ward functional, and some models of the algebraic diagrammatic construction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信