因果钻石中热场双态的路径积分推导

Abhijit Chakraborty, Carlos R. Ordóñez, Gustavo Valdivia-Mera
{"title":"因果钻石中热场双态的路径积分推导","authors":"Abhijit Chakraborty, Carlos R. Ordóñez, Gustavo Valdivia-Mera","doi":"arxiv-2312.03541","DOIUrl":null,"url":null,"abstract":"In this article, we follow the framework given in the article Physica A, 158,\npg 58-63 (1989) by R. Laflamme to derive the thermofield double state for a\ncausal diamond using the Euclidean path integral formalism, and subsequently\nderive the causal diamond temperature. The interpretation of the physical and\nfictitious system in the thermofield double state arises naturally from the\nboundary conditions of the fields defined on the Euclidean sections of the\ncylindrical background geometry $S^{1}_{\\beta}\\times \\mathbb{R}$, where $\\beta$\ndefines the periodicity of the Euclidean time coordinate and $S^{1}_{\\beta}$ is\nthe one-dimensional sphere (circle). The temperature detected by a static\ndiamond observer at $x=0$ matches with the thermofield double temperature\nderived via this path integral procedure.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Path integral derivation of the thermofield double state in causal diamonds\",\"authors\":\"Abhijit Chakraborty, Carlos R. Ordóñez, Gustavo Valdivia-Mera\",\"doi\":\"arxiv-2312.03541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we follow the framework given in the article Physica A, 158,\\npg 58-63 (1989) by R. Laflamme to derive the thermofield double state for a\\ncausal diamond using the Euclidean path integral formalism, and subsequently\\nderive the causal diamond temperature. The interpretation of the physical and\\nfictitious system in the thermofield double state arises naturally from the\\nboundary conditions of the fields defined on the Euclidean sections of the\\ncylindrical background geometry $S^{1}_{\\\\beta}\\\\times \\\\mathbb{R}$, where $\\\\beta$\\ndefines the periodicity of the Euclidean time coordinate and $S^{1}_{\\\\beta}$ is\\nthe one-dimensional sphere (circle). The temperature detected by a static\\ndiamond observer at $x=0$ matches with the thermofield double temperature\\nderived via this path integral procedure.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.03541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.03541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们按照拉弗兰梅(R. Laflamme)在文章《物理学A》158,第58-63页(1989年)中给出的框架,利用欧几里得路径积分形式主义推导出因果钻石的热场双重态,并随后推导出因果钻石温度。对热场双重态中的物理和虚构系统的解释自然来自于在圆柱背景几何$S^{1}_\{beta}\times \mathbb{R}$的欧几里得截面上定义的场的边界条件,其中$\beta$定义了欧几里得时间坐标的周期性,$S^{1}_{\beta}$是一维球体(圆)。静态金刚石观测器在 $x=0$ 时检测到的温度与通过该路径积分过程得出的热场双温相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Path integral derivation of the thermofield double state in causal diamonds
In this article, we follow the framework given in the article Physica A, 158, pg 58-63 (1989) by R. Laflamme to derive the thermofield double state for a causal diamond using the Euclidean path integral formalism, and subsequently derive the causal diamond temperature. The interpretation of the physical and fictitious system in the thermofield double state arises naturally from the boundary conditions of the fields defined on the Euclidean sections of the cylindrical background geometry $S^{1}_{\beta}\times \mathbb{R}$, where $\beta$ defines the periodicity of the Euclidean time coordinate and $S^{1}_{\beta}$ is the one-dimensional sphere (circle). The temperature detected by a static diamond observer at $x=0$ matches with the thermofield double temperature derived via this path integral procedure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信