Y. Q. Sun, Y. P. Zhang, Q. W. Liu, Z. Z. Fan, N. Li, A. Q. Wei
{"title":"新型高效气井泡沫排水剂的研究进展(综述)","authors":"Y. Q. Sun, Y. P. Zhang, Q. W. Liu, Z. Z. Fan, N. Li, A. Q. Wei","doi":"10.1134/S0965544123080029","DOIUrl":null,"url":null,"abstract":"<p>This paper reviews the research background and significance of foam drainage agents, foaming and foam stability mechanisms, and analyzes the advantages and drawbacks of conventional foam drainage agents. With the development of natural gas applications, the exploitation of gas fields becomes more stringent. A new type of foam drainage agent characterized by a wide applicability should be developed based on the particular needs of gas wells. A new foam drainage agent not only resolves the deficiency of conventional foam drainage agents, but also deals with the problem of high costs. It has a higher foam stability and provides a standard for the further design of special conventional and unconventional foam drainage agents for gas fields. Moreover, the polymer addition dramatically improves the performance of foam drainage agents. A Gemini surfactant opens up a new possibility for foam drainage agents. The use of nanoparticles provides the further enhancement of the foam stability for different types of gas reservoirs. The future application trends for foam drainage agents are also discussed. A low-cost and environmentally friendly natural gas promoting a low-carbon green energy, should be developed and used. Highly efficient, environmentally-friendly and recyclable low-cost foam drainage agents would become a hotly debated research point.</p>","PeriodicalId":725,"journal":{"name":"Petroleum Chemistry","volume":"63 9","pages":"1119 - 1131"},"PeriodicalIF":1.3000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research Progress on New Highly Efficient Foam Drainage Agents for Gas Wells (A Review)\",\"authors\":\"Y. Q. Sun, Y. P. Zhang, Q. W. Liu, Z. Z. Fan, N. Li, A. Q. Wei\",\"doi\":\"10.1134/S0965544123080029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper reviews the research background and significance of foam drainage agents, foaming and foam stability mechanisms, and analyzes the advantages and drawbacks of conventional foam drainage agents. With the development of natural gas applications, the exploitation of gas fields becomes more stringent. A new type of foam drainage agent characterized by a wide applicability should be developed based on the particular needs of gas wells. A new foam drainage agent not only resolves the deficiency of conventional foam drainage agents, but also deals with the problem of high costs. It has a higher foam stability and provides a standard for the further design of special conventional and unconventional foam drainage agents for gas fields. Moreover, the polymer addition dramatically improves the performance of foam drainage agents. A Gemini surfactant opens up a new possibility for foam drainage agents. The use of nanoparticles provides the further enhancement of the foam stability for different types of gas reservoirs. The future application trends for foam drainage agents are also discussed. A low-cost and environmentally friendly natural gas promoting a low-carbon green energy, should be developed and used. Highly efficient, environmentally-friendly and recyclable low-cost foam drainage agents would become a hotly debated research point.</p>\",\"PeriodicalId\":725,\"journal\":{\"name\":\"Petroleum Chemistry\",\"volume\":\"63 9\",\"pages\":\"1119 - 1131\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Chemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0965544123080029\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Chemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0965544123080029","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Research Progress on New Highly Efficient Foam Drainage Agents for Gas Wells (A Review)
This paper reviews the research background and significance of foam drainage agents, foaming and foam stability mechanisms, and analyzes the advantages and drawbacks of conventional foam drainage agents. With the development of natural gas applications, the exploitation of gas fields becomes more stringent. A new type of foam drainage agent characterized by a wide applicability should be developed based on the particular needs of gas wells. A new foam drainage agent not only resolves the deficiency of conventional foam drainage agents, but also deals with the problem of high costs. It has a higher foam stability and provides a standard for the further design of special conventional and unconventional foam drainage agents for gas fields. Moreover, the polymer addition dramatically improves the performance of foam drainage agents. A Gemini surfactant opens up a new possibility for foam drainage agents. The use of nanoparticles provides the further enhancement of the foam stability for different types of gas reservoirs. The future application trends for foam drainage agents are also discussed. A low-cost and environmentally friendly natural gas promoting a low-carbon green energy, should be developed and used. Highly efficient, environmentally-friendly and recyclable low-cost foam drainage agents would become a hotly debated research point.
期刊介绍:
Petroleum Chemistry (Neftekhimiya), founded in 1961, offers original papers on and reviews of theoretical and experimental studies concerned with current problems of petroleum chemistry and processing such as chemical composition of crude oils and natural gas liquids; petroleum refining (cracking, hydrocracking, and catalytic reforming); catalysts for petrochemical processes (hydrogenation, isomerization, oxidation, hydroformylation, etc.); activation and catalytic transformation of hydrocarbons and other components of petroleum, natural gas, and other complex organic mixtures; new petrochemicals including lubricants and additives; environmental problems; and information on scientific meetings relevant to these areas.
Petroleum Chemistry publishes articles on these topics from members of the scientific community of the former Soviet Union.