Lukas Schäfers, Kai Franke, Rene Savelsberg, Stefan Pischinger
{"title":"利用系统识别和深度学习预测电池电动汽车的辅助动力和能源需求","authors":"Lukas Schäfers, Kai Franke, Rene Savelsberg, Stefan Pischinger","doi":"10.1049/itr2.12467","DOIUrl":null,"url":null,"abstract":"<p>The energy demand of the auxiliaries of battery electric vehicles can account for a significant share of the total energy demand of a trip and must be taken into account for the prediction of the vehicle's remaining driving range or the implementation of predictive driving functions. This paper investigates a method that uses system identification and neural networks with bidirectional long short-term memory layers to predict the power requirements of the auxiliaries depending on information that is known prior to the trip. By using a self-learning, data-driven approach as well as data that can be measured without additional instrumentation, a prediction is made possible without the need to design detailed physical models in advance. Additionally, a rule-based allocation of the training data based on environmental conditions is implemented, which serves to adapt individual models to different climatic modes of the thermal system. The potential of the method is demonstrated for three different systems showing a prediction accuracy of on average 3% to 8% in terms of energy, while the deviation of the predicted power consumption is on average about 500 watts. Due to the complete automation of the process, a further increase in prediction accuracy can be expected.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12467","citationCount":"0","resultStr":"{\"title\":\"Auxiliaries’ power and energy demand prediction of battery electric vehicles using system identification and deep learning\",\"authors\":\"Lukas Schäfers, Kai Franke, Rene Savelsberg, Stefan Pischinger\",\"doi\":\"10.1049/itr2.12467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The energy demand of the auxiliaries of battery electric vehicles can account for a significant share of the total energy demand of a trip and must be taken into account for the prediction of the vehicle's remaining driving range or the implementation of predictive driving functions. This paper investigates a method that uses system identification and neural networks with bidirectional long short-term memory layers to predict the power requirements of the auxiliaries depending on information that is known prior to the trip. By using a self-learning, data-driven approach as well as data that can be measured without additional instrumentation, a prediction is made possible without the need to design detailed physical models in advance. Additionally, a rule-based allocation of the training data based on environmental conditions is implemented, which serves to adapt individual models to different climatic modes of the thermal system. The potential of the method is demonstrated for three different systems showing a prediction accuracy of on average 3% to 8% in terms of energy, while the deviation of the predicted power consumption is on average about 500 watts. Due to the complete automation of the process, a further increase in prediction accuracy can be expected.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12467\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12467\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12467","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Auxiliaries’ power and energy demand prediction of battery electric vehicles using system identification and deep learning
The energy demand of the auxiliaries of battery electric vehicles can account for a significant share of the total energy demand of a trip and must be taken into account for the prediction of the vehicle's remaining driving range or the implementation of predictive driving functions. This paper investigates a method that uses system identification and neural networks with bidirectional long short-term memory layers to predict the power requirements of the auxiliaries depending on information that is known prior to the trip. By using a self-learning, data-driven approach as well as data that can be measured without additional instrumentation, a prediction is made possible without the need to design detailed physical models in advance. Additionally, a rule-based allocation of the training data based on environmental conditions is implemented, which serves to adapt individual models to different climatic modes of the thermal system. The potential of the method is demonstrated for three different systems showing a prediction accuracy of on average 3% to 8% in terms of energy, while the deviation of the predicted power consumption is on average about 500 watts. Due to the complete automation of the process, a further increase in prediction accuracy can be expected.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf