Daniel Lawson, Sophie Blundell, Martin Ebert, Otto L. Muskens, and Ioannis Zeimpekis
{"title":"低损耗相变材料 Sb2Se3 一百万次以上的光学切换","authors":"Daniel Lawson, Sophie Blundell, Martin Ebert, Otto L. Muskens, and Ioannis Zeimpekis","doi":"10.1364/ome.509434","DOIUrl":null,"url":null,"abstract":"The development of the next generation of optical phase change technologies for integrated photonic and free-space platforms relies on the availability of materials that can be switched repeatedly over large volumes and with low optical losses. In recent years, the antimony-based chalcogenide phase-change material Sb$_2$Se$_3$ has been identified as particularly promising for a number of applications owing to good optical transparency in the near-infrared part of the spectrum and a high refractive index close to silicon. The crystallization temperature of Sb$_2$Se$_3$ of around 460 K allows switching to be achieved at moderate energies using optical or electrical control signals while providing sufficient data retention time for non-volatile storage. Here, we investigate the parameter space for optical switching of films of Sb$_2$Se$_3$ for a range of film thicknesses relevant for optical applications. By identifying optimal switching conditions, we demonstrate endurance of up to 10$^7$ cycles at reversible switching rates of 20 kHz. Our work demonstrates that the combination of intrinsic film parameters with pumping conditions is particularly critical for achieving high endurance in optical phase change applications.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":"15 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical switching beyond a million cycles of low-loss phase change material Sb2Se3\",\"authors\":\"Daniel Lawson, Sophie Blundell, Martin Ebert, Otto L. Muskens, and Ioannis Zeimpekis\",\"doi\":\"10.1364/ome.509434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of the next generation of optical phase change technologies for integrated photonic and free-space platforms relies on the availability of materials that can be switched repeatedly over large volumes and with low optical losses. In recent years, the antimony-based chalcogenide phase-change material Sb$_2$Se$_3$ has been identified as particularly promising for a number of applications owing to good optical transparency in the near-infrared part of the spectrum and a high refractive index close to silicon. The crystallization temperature of Sb$_2$Se$_3$ of around 460 K allows switching to be achieved at moderate energies using optical or electrical control signals while providing sufficient data retention time for non-volatile storage. Here, we investigate the parameter space for optical switching of films of Sb$_2$Se$_3$ for a range of film thicknesses relevant for optical applications. By identifying optimal switching conditions, we demonstrate endurance of up to 10$^7$ cycles at reversible switching rates of 20 kHz. Our work demonstrates that the combination of intrinsic film parameters with pumping conditions is particularly critical for achieving high endurance in optical phase change applications.\",\"PeriodicalId\":19548,\"journal\":{\"name\":\"Optical Materials Express\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Materials Express\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1364/ome.509434\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1364/ome.509434","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Optical switching beyond a million cycles of low-loss phase change material Sb2Se3
The development of the next generation of optical phase change technologies for integrated photonic and free-space platforms relies on the availability of materials that can be switched repeatedly over large volumes and with low optical losses. In recent years, the antimony-based chalcogenide phase-change material Sb$_2$Se$_3$ has been identified as particularly promising for a number of applications owing to good optical transparency in the near-infrared part of the spectrum and a high refractive index close to silicon. The crystallization temperature of Sb$_2$Se$_3$ of around 460 K allows switching to be achieved at moderate energies using optical or electrical control signals while providing sufficient data retention time for non-volatile storage. Here, we investigate the parameter space for optical switching of films of Sb$_2$Se$_3$ for a range of film thicknesses relevant for optical applications. By identifying optimal switching conditions, we demonstrate endurance of up to 10$^7$ cycles at reversible switching rates of 20 kHz. Our work demonstrates that the combination of intrinsic film parameters with pumping conditions is particularly critical for achieving high endurance in optical phase change applications.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optical Materials Express (OMEx), OSA''s open-access, rapid-review journal, primarily emphasizes advances in both conventional and novel optical materials, their properties, theory and modeling, synthesis and fabrication approaches for optics and photonics; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. The journal covers a full range of topics, including, but not limited to:
Artificially engineered optical structures
Biomaterials
Optical detector materials
Optical storage media
Materials for integrated optics
Nonlinear optical materials
Laser materials
Metamaterials
Nanomaterials
Organics and polymers
Soft materials
IR materials
Materials for fiber optics
Hybrid technologies
Materials for quantum photonics
Optical Materials Express considers original research articles, feature issue contributions, invited reviews, and comments on published articles. The Journal also publishes occasional short, timely opinion articles from experts and thought-leaders in the field on current or emerging topic areas that are generating significant interest.