{"title":"基于镍/锰双金属有机框架的传感平台用于奥希替尼的电化学检测","authors":"Zahra Mirzaei Karazan, Mahmoud Roushani","doi":"10.1007/s12678-023-00857-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the synthesis and properties of a selective electrochemical sensor for the determination of osimertinib (OSIM) as an anticancer drug using the bimetal-organic framework (MOF) were reported. Herein, MOF based on nickel/manganese (Ni/Mn-MOFs) was successfully created using the solvothermal method and applied for the amperometric detection of OSIM. Then, Ni/Mn-MOF was analyzed through a field emission scanning electron microscope (FE-SEM) and X-ray diffraction (XRD). The electrocatalytic performance of the introduced MOF is used in the electrochemical determination of the OSIM drug. The synthesized MOF leads to a noticeable improvement in the electrochemical performance which is ascribed to the many electrocatalytic sites, wide electrode–electrolyte contact area, and excellent electrical conductivity. This is the first study on the use of Ni/Mn-MOF to detect of OSIM. The Ni/Mn-MOF modified glassy carbon electrode (Ni/Mn-MOF/GCE) exhibited a good linear range from 0.5 to 800 μM and 800 to 1800 μM with a low detection limit (LOD) as 0.16 μM. In addition, the proposed sensor possessed good anti-interference properties, repeatability, stability, and reproducibility. The mentioned substrate to detect OSIM in the samples of blood serum was successfully applied. This research displays that MOFs are reliable materials for designing effective electrochemical sensors to detect drugs easily. The existing research results provide insights into the promotion and development of the bimetal-organic framework in the field of electrochemical applications and promising for usage in other electrochemical studies.</p></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"15 1","pages":"110 - 119"},"PeriodicalIF":2.7000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Sensing Platform Based on Ni/Mn Bimetal-Organic Framework for Electrochemical Detection of Osimertinib\",\"authors\":\"Zahra Mirzaei Karazan, Mahmoud Roushani\",\"doi\":\"10.1007/s12678-023-00857-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, the synthesis and properties of a selective electrochemical sensor for the determination of osimertinib (OSIM) as an anticancer drug using the bimetal-organic framework (MOF) were reported. Herein, MOF based on nickel/manganese (Ni/Mn-MOFs) was successfully created using the solvothermal method and applied for the amperometric detection of OSIM. Then, Ni/Mn-MOF was analyzed through a field emission scanning electron microscope (FE-SEM) and X-ray diffraction (XRD). The electrocatalytic performance of the introduced MOF is used in the electrochemical determination of the OSIM drug. The synthesized MOF leads to a noticeable improvement in the electrochemical performance which is ascribed to the many electrocatalytic sites, wide electrode–electrolyte contact area, and excellent electrical conductivity. This is the first study on the use of Ni/Mn-MOF to detect of OSIM. The Ni/Mn-MOF modified glassy carbon electrode (Ni/Mn-MOF/GCE) exhibited a good linear range from 0.5 to 800 μM and 800 to 1800 μM with a low detection limit (LOD) as 0.16 μM. In addition, the proposed sensor possessed good anti-interference properties, repeatability, stability, and reproducibility. The mentioned substrate to detect OSIM in the samples of blood serum was successfully applied. This research displays that MOFs are reliable materials for designing effective electrochemical sensors to detect drugs easily. The existing research results provide insights into the promotion and development of the bimetal-organic framework in the field of electrochemical applications and promising for usage in other electrochemical studies.</p></div>\",\"PeriodicalId\":535,\"journal\":{\"name\":\"Electrocatalysis\",\"volume\":\"15 1\",\"pages\":\"110 - 119\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrocatalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12678-023-00857-4\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-023-00857-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
本研究报告了利用双金属有机框架(MOF)测定抗癌药物奥西替尼(OSIM)的选择性电化学传感器的合成及其特性。本文采用溶热法成功制备了基于镍/锰(Ni/Mn-MOFs)的MOF,并将其应用于OSIM的安培检测。然后,通过场发射扫描电子显微镜(FE-SEM)和 X 射线衍射(XRD)对镍/锰-MOF 进行了分析。引入的 MOF 的电催化性能被用于 OSIM 药物的电化学测定。合成的 MOF 明显改善了电化学性能,这归功于其众多的电催化位点、宽广的电极-电解质接触面积和优异的导电性。这是首次使用 Ni/Mn-MOF 检测 OSIM 的研究。经 Ni/Mn-MOF 修饰的玻璃碳电极(Ni/Mn-MOF/GCE)在 0.5 至 800 μM 和 800 至 1800 μM 之间具有良好的线性范围,检出限(LOD)低至 0.16 μM。此外,该传感器还具有良好的抗干扰性、重复性、稳定性和再现性。上述基底已成功用于检测血清样品中的 OSIM。这项研究表明,MOFs 是设计有效电化学传感器的可靠材料,可轻松检测药物。现有研究成果为双金属有机框架在电化学应用领域的推广和发展提供了启示,并有望用于其他电化学研究。
A Sensing Platform Based on Ni/Mn Bimetal-Organic Framework for Electrochemical Detection of Osimertinib
In this study, the synthesis and properties of a selective electrochemical sensor for the determination of osimertinib (OSIM) as an anticancer drug using the bimetal-organic framework (MOF) were reported. Herein, MOF based on nickel/manganese (Ni/Mn-MOFs) was successfully created using the solvothermal method and applied for the amperometric detection of OSIM. Then, Ni/Mn-MOF was analyzed through a field emission scanning electron microscope (FE-SEM) and X-ray diffraction (XRD). The electrocatalytic performance of the introduced MOF is used in the electrochemical determination of the OSIM drug. The synthesized MOF leads to a noticeable improvement in the electrochemical performance which is ascribed to the many electrocatalytic sites, wide electrode–electrolyte contact area, and excellent electrical conductivity. This is the first study on the use of Ni/Mn-MOF to detect of OSIM. The Ni/Mn-MOF modified glassy carbon electrode (Ni/Mn-MOF/GCE) exhibited a good linear range from 0.5 to 800 μM and 800 to 1800 μM with a low detection limit (LOD) as 0.16 μM. In addition, the proposed sensor possessed good anti-interference properties, repeatability, stability, and reproducibility. The mentioned substrate to detect OSIM in the samples of blood serum was successfully applied. This research displays that MOFs are reliable materials for designing effective electrochemical sensors to detect drugs easily. The existing research results provide insights into the promotion and development of the bimetal-organic framework in the field of electrochemical applications and promising for usage in other electrochemical studies.
期刊介绍:
Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies.
Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.