在线控制实验数据集

C. H. Bryan Liu, Ângelo Cardoso, Paul Couturier, Emma J. McCoy
{"title":"在线控制实验数据集","authors":"C. H. Bryan Liu, Ângelo Cardoso, Paul Couturier, Emma J. McCoy","doi":"arxiv-2111.10198","DOIUrl":null,"url":null,"abstract":"Online Controlled Experiments (OCE) are the gold standard to measure impact\nand guide decisions for digital products and services. Despite many\nmethodological advances in this area, the scarcity of public datasets and the\nlack of a systematic review and categorization hinder its development. We\npresent the first survey and taxonomy for OCE datasets, which highlight the\nlack of a public dataset to support the design and running of experiments with\nadaptive stopping, an increasingly popular approach to enable quickly deploying\nimprovements or rolling back degrading changes. We release the first such\ndataset, containing daily checkpoints of decision metrics from multiple, real\nexperiments run on a global e-commerce platform. The dataset design is guided\nby a broader discussion on data requirements for common statistical tests used\nin digital experimentation. We demonstrate how to use the dataset in the\nadaptive stopping scenario using sequential and Bayesian hypothesis tests and\nlearn the relevant parameters for each approach.","PeriodicalId":501533,"journal":{"name":"arXiv - CS - General Literature","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Datasets for Online Controlled Experiments\",\"authors\":\"C. H. Bryan Liu, Ângelo Cardoso, Paul Couturier, Emma J. McCoy\",\"doi\":\"arxiv-2111.10198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online Controlled Experiments (OCE) are the gold standard to measure impact\\nand guide decisions for digital products and services. Despite many\\nmethodological advances in this area, the scarcity of public datasets and the\\nlack of a systematic review and categorization hinder its development. We\\npresent the first survey and taxonomy for OCE datasets, which highlight the\\nlack of a public dataset to support the design and running of experiments with\\nadaptive stopping, an increasingly popular approach to enable quickly deploying\\nimprovements or rolling back degrading changes. We release the first such\\ndataset, containing daily checkpoints of decision metrics from multiple, real\\nexperiments run on a global e-commerce platform. The dataset design is guided\\nby a broader discussion on data requirements for common statistical tests used\\nin digital experimentation. We demonstrate how to use the dataset in the\\nadaptive stopping scenario using sequential and Bayesian hypothesis tests and\\nlearn the relevant parameters for each approach.\",\"PeriodicalId\":501533,\"journal\":{\"name\":\"arXiv - CS - General Literature\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - General Literature\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2111.10198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - General Literature","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2111.10198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在线控制实验(OCE)是衡量数字产品和服务影响和指导决策的黄金标准。尽管在这一领域取得了许多方法上的进步,但缺乏公共数据集和缺乏系统的审查和分类阻碍了它的发展。我们提出了OCE数据集的第一个调查和分类,强调缺乏公共数据集来支持自适应停止实验的设计和运行,这是一种越来越流行的方法,可以快速部署改进或回滚降级更改。我们发布了第一个这样的数据集,包含了在全球电子商务平台上运行的多个真实实验的决策指标的每日检查点。数据集设计的指导是对数字实验中常用统计测试的数据要求进行更广泛的讨论。我们演示了如何在自适应停止场景中使用数据集,使用顺序和贝叶斯假设检验,并学习每种方法的相关参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Datasets for Online Controlled Experiments
Online Controlled Experiments (OCE) are the gold standard to measure impact and guide decisions for digital products and services. Despite many methodological advances in this area, the scarcity of public datasets and the lack of a systematic review and categorization hinder its development. We present the first survey and taxonomy for OCE datasets, which highlight the lack of a public dataset to support the design and running of experiments with adaptive stopping, an increasingly popular approach to enable quickly deploying improvements or rolling back degrading changes. We release the first such dataset, containing daily checkpoints of decision metrics from multiple, real experiments run on a global e-commerce platform. The dataset design is guided by a broader discussion on data requirements for common statistical tests used in digital experimentation. We demonstrate how to use the dataset in the adaptive stopping scenario using sequential and Bayesian hypothesis tests and learn the relevant parameters for each approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信