Yang-Baxter可积开放量子系统

Chiara Paletta
{"title":"Yang-Baxter可积开放量子系统","authors":"Chiara Paletta","doi":"arxiv-2312.00064","DOIUrl":null,"url":null,"abstract":"This work is based on the author's PhD thesis. The main result of the thesis\nis the use of the boost operator to develop a systematic method to construct\nnew integrable spin chains with nearest-neighbour interaction and characterized\nby an R-matrix of non-difference form. This method has the advantage of being\nmore feasible than directly solving the Yang-Baxter equation. We applied this\napproach to various contexts, in particular, in the realm of open quantum\nsystems, we achieved the first classification of integrable Lindbladians. These\noperators describe the dynamics of physical systems in contact with a Markovian\nenvironment. Within this classification, we discovered a novel deformation of\nthe Hubbard model spanning three sites of the spin chain. Additionally, we\napplied our method to classify models with $\\mathfrak{su}(2)\\oplus\n\\mathfrak{su}(2)$ symmetry and we recovered the matrix part of the S-matrix of\n$AdS_5 \\times S^5$ derived by requiring centrally extended $\\mathfrak{su}(2|2)$\nsymmetry. Furthermore, we focus on spin 1/2 chain on models of 8-Vertex type\nand we showed that the models of this class satisfy the free fermion condition.\nThis enables us to express the transfer matrix associated to some of the models\nin a diagonal form, simplifying the computation of the eigenvalues and\neigenvectors. The thesis is based on the works: 2003.04332, 2010.11231,\n2011.08217, 2101.08279, 2207.14193, 2301.01612, 2305.01922.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"84 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Yang-Baxter integrable open quantum systems\",\"authors\":\"Chiara Paletta\",\"doi\":\"arxiv-2312.00064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is based on the author's PhD thesis. The main result of the thesis\\nis the use of the boost operator to develop a systematic method to construct\\nnew integrable spin chains with nearest-neighbour interaction and characterized\\nby an R-matrix of non-difference form. This method has the advantage of being\\nmore feasible than directly solving the Yang-Baxter equation. We applied this\\napproach to various contexts, in particular, in the realm of open quantum\\nsystems, we achieved the first classification of integrable Lindbladians. These\\noperators describe the dynamics of physical systems in contact with a Markovian\\nenvironment. Within this classification, we discovered a novel deformation of\\nthe Hubbard model spanning three sites of the spin chain. Additionally, we\\napplied our method to classify models with $\\\\mathfrak{su}(2)\\\\oplus\\n\\\\mathfrak{su}(2)$ symmetry and we recovered the matrix part of the S-matrix of\\n$AdS_5 \\\\times S^5$ derived by requiring centrally extended $\\\\mathfrak{su}(2|2)$\\nsymmetry. Furthermore, we focus on spin 1/2 chain on models of 8-Vertex type\\nand we showed that the models of this class satisfy the free fermion condition.\\nThis enables us to express the transfer matrix associated to some of the models\\nin a diagonal form, simplifying the computation of the eigenvalues and\\neigenvectors. The thesis is based on the works: 2003.04332, 2010.11231,\\n2011.08217, 2101.08279, 2207.14193, 2301.01612, 2305.01922.\",\"PeriodicalId\":501592,\"journal\":{\"name\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.00064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.00064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作是基于作者的博士论文。本文的主要成果是利用boost算子建立了一种系统的方法来构造新的具有最近邻相互作用的可积自旋链,并以非差分形式的r矩阵为特征。这种方法比直接求解Yang-Baxter方程更可行。我们将这种方法应用于各种环境,特别是在开放量子系统领域,我们实现了可积林德布拉迪亚的第一个分类。这些算子描述了与马尔科夫环境接触的物理系统的动力学。在这种分类中,我们发现了哈伯德模型的一种新的变形,它跨越了自旋链的三个位点。此外,我们应用我们的方法对具有$\mathfrak{su}(2)\ 0 + \mathfrak{su}(2)$对称性的模型进行分类,并恢复了通过集中扩展$\mathfrak{su}(2|2)$对称性得到的$AdS_5 \乘以S^5$的S矩阵的矩阵部分。进一步,我们对8顶点型模型的自旋1/2链进行了研究,证明了这类模型满足自由费米子条件。这使我们能够以对角线形式表示与某些模型相关的转移矩阵,从而简化了特征值和特征向量的计算。本文基于以下工作:2003.04332,2010.11231,2011.08217,2101.08279,2207.14193,2301.01612,2305.01922。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Yang-Baxter integrable open quantum systems
This work is based on the author's PhD thesis. The main result of the thesis is the use of the boost operator to develop a systematic method to construct new integrable spin chains with nearest-neighbour interaction and characterized by an R-matrix of non-difference form. This method has the advantage of being more feasible than directly solving the Yang-Baxter equation. We applied this approach to various contexts, in particular, in the realm of open quantum systems, we achieved the first classification of integrable Lindbladians. These operators describe the dynamics of physical systems in contact with a Markovian environment. Within this classification, we discovered a novel deformation of the Hubbard model spanning three sites of the spin chain. Additionally, we applied our method to classify models with $\mathfrak{su}(2)\oplus \mathfrak{su}(2)$ symmetry and we recovered the matrix part of the S-matrix of $AdS_5 \times S^5$ derived by requiring centrally extended $\mathfrak{su}(2|2)$ symmetry. Furthermore, we focus on spin 1/2 chain on models of 8-Vertex type and we showed that the models of this class satisfy the free fermion condition. This enables us to express the transfer matrix associated to some of the models in a diagonal form, simplifying the computation of the eigenvalues and eigenvectors. The thesis is based on the works: 2003.04332, 2010.11231, 2011.08217, 2101.08279, 2207.14193, 2301.01612, 2305.01922.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信