将二维sine-Gordon系统简化为第六painleve方程

Robert ConteENS Paris-Saclay, France and U of Hong Kong, A. Michel GrundlandUQTR, Canada
{"title":"将二维sine-Gordon系统简化为第六painleve方程","authors":"Robert ConteENS Paris-Saclay, France and U of Hong Kong, A. Michel GrundlandUQTR, Canada","doi":"arxiv-2311.17469","DOIUrl":null,"url":null,"abstract":"We derive all the reductions of the system of two coupled sine-Gordon\nequations introduced by Konopelchenko and Rogers to ordinary differential\nequations. All these reductions are degeneracies of a master reduction to an\nequation found by Chazy \"curious for its elegance\", an algebraic transform of\nthe most general sixth equation of Painlev\\'e. -- -- Nous \\'etablissons toutes les r\\'eductions du syst\\`eme de deux \\'equations\ncoupl\\'ees de sine-Gordon introduit par Konopelchenko et Rogers \\`a des\n\\'equations diff\\'erentielles ordinaires. Ces r\\'eductions sont toutes des\nd\\'eg\\'en\\'erescences d'une r\\'eduction ma{\\^\\i}tresse \\`a une \\'equation\njug\\'ee par Chazy \"curieuse en raison de [son] \\'el\\'egance\", transform\\'ee\nalg\\'ebrique de la sixi\\`eme \\'equation de Painlev\\'e la plus g\\'en\\'erale.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Réductions d'un système bidimensionnel de sine-Gordon à la sixième équation de Painlevé\",\"authors\":\"Robert ConteENS Paris-Saclay, France and U of Hong Kong, A. Michel GrundlandUQTR, Canada\",\"doi\":\"arxiv-2311.17469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive all the reductions of the system of two coupled sine-Gordon\\nequations introduced by Konopelchenko and Rogers to ordinary differential\\nequations. All these reductions are degeneracies of a master reduction to an\\nequation found by Chazy \\\"curious for its elegance\\\", an algebraic transform of\\nthe most general sixth equation of Painlev\\\\'e. -- -- Nous \\\\'etablissons toutes les r\\\\'eductions du syst\\\\`eme de deux \\\\'equations\\ncoupl\\\\'ees de sine-Gordon introduit par Konopelchenko et Rogers \\\\`a des\\n\\\\'equations diff\\\\'erentielles ordinaires. Ces r\\\\'eductions sont toutes des\\nd\\\\'eg\\\\'en\\\\'erescences d'une r\\\\'eduction ma{\\\\^\\\\i}tresse \\\\`a une \\\\'equation\\njug\\\\'ee par Chazy \\\"curieuse en raison de [son] \\\\'el\\\\'egance\\\", transform\\\\'ee\\nalg\\\\'ebrique de la sixi\\\\`eme \\\\'equation de Painlev\\\\'e la plus g\\\\'en\\\\'erale.\",\"PeriodicalId\":501592,\"journal\":{\"name\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2311.17469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.17469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们导出了由Konopelchenko和Rogers引入的两个耦合正弦- gordon方程组对常微分方程的所有化简。所有这些约简都是对Chazy发现的一个“对其优雅感到好奇”的方程的主约简的简并,这是painleve最一般的第六方程的代数变换。-- -- Nous 'etablissons吹捧les ' educations du system ' eme de deux 'equations ' couples ' es de sin - gordon介绍parkonopelchenko和Rogers ' a des 'equations diff ' entientielles ordinaires。Ces r \ '排出的书桌\ '如\ ' en \ '一个r erescences \“马排出{\ ^ \我}tresse \ '一个\“equationjug \”ee par Chazy“curieuse en雷森(儿子)\ ' el \ ' egance”,变换\ ' eealg \ ' ebrique de la泗溪\“高速\”方程de Painlev \“e la + g \ ' \ ' erale。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Réductions d'un système bidimensionnel de sine-Gordon à la sixième équation de Painlevé
We derive all the reductions of the system of two coupled sine-Gordon equations introduced by Konopelchenko and Rogers to ordinary differential equations. All these reductions are degeneracies of a master reduction to an equation found by Chazy "curious for its elegance", an algebraic transform of the most general sixth equation of Painlev\'e. -- -- Nous \'etablissons toutes les r\'eductions du syst\`eme de deux \'equations coupl\'ees de sine-Gordon introduit par Konopelchenko et Rogers \`a des \'equations diff\'erentielles ordinaires. Ces r\'eductions sont toutes des d\'eg\'en\'erescences d'une r\'eduction ma{\^\i}tresse \`a une \'equation jug\'ee par Chazy "curieuse en raison de [son] \'el\'egance", transform\'ee alg\'ebrique de la sixi\`eme \'equation de Painlev\'e la plus g\'en\'erale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信