Grassmann代数上的缠绕Yang-Baxter映射

P. Adamopoulou, G. Papamikos
{"title":"Grassmann代数上的缠绕Yang-Baxter映射","authors":"P. Adamopoulou, G. Papamikos","doi":"arxiv-2311.18673","DOIUrl":null,"url":null,"abstract":"We construct novel solutions to the set-theoretical entwining Yang-Baxter\nequation. These solutions are birational maps involving non-commutative\ndynamical variables which are elements of the Grassmann algebra of order $n$.\nThe maps arise from refactorisation problems of Lax supermatrices associated to\na nonlinear Schr\\\"odinger equation. In this non-commutative setting, we\nconstruct a spectral curve associated to each of the obtained maps using the\ncharacteristic function of its monodromy supermatrix. We find generating\nfunctions of invariants (first integrals) for the entwining Yang-Baxter maps\nfrom the moduli of the spectral curves. Moreover, we show that a hierarchy of\nbirational entwining Yang-Baxter maps with commutative variables can be\nobtained by fixing the order $n$ of the Grassmann algebra. We present the\nmembers of the hierarchy in the case $n=1$ (dual numbers) and $n=2$, and\ndiscuss their dynamical and integrability properties, such as Lax matrices,\ninvariants, and measure preservation.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entwining Yang-Baxter maps over Grassmann algebras\",\"authors\":\"P. Adamopoulou, G. Papamikos\",\"doi\":\"arxiv-2311.18673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct novel solutions to the set-theoretical entwining Yang-Baxter\\nequation. These solutions are birational maps involving non-commutative\\ndynamical variables which are elements of the Grassmann algebra of order $n$.\\nThe maps arise from refactorisation problems of Lax supermatrices associated to\\na nonlinear Schr\\\\\\\"odinger equation. In this non-commutative setting, we\\nconstruct a spectral curve associated to each of the obtained maps using the\\ncharacteristic function of its monodromy supermatrix. We find generating\\nfunctions of invariants (first integrals) for the entwining Yang-Baxter maps\\nfrom the moduli of the spectral curves. Moreover, we show that a hierarchy of\\nbirational entwining Yang-Baxter maps with commutative variables can be\\nobtained by fixing the order $n$ of the Grassmann algebra. We present the\\nmembers of the hierarchy in the case $n=1$ (dual numbers) and $n=2$, and\\ndiscuss their dynamical and integrability properties, such as Lax matrices,\\ninvariants, and measure preservation.\",\"PeriodicalId\":501592,\"journal\":{\"name\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2311.18673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.18673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文构造了集论盘绕杨-巴克斯特方程的新解。这些解是包含非交换动态变量的双区映射,这些变量是阶$n$的Grassmann代数的元素。这些映射是由与非线性Schr\ odinger方程相关的Lax超矩阵重构问题引起的。在这种非交换设置中,我们使用其单一性超矩阵的特征函数构造与每个获得的映射相关联的谱曲线。我们从谱曲线的模中找到了缠绕杨-巴克斯特映射的不变量(第一积分)的生成函数。此外,我们还证明了通过固定Grassmann代数的阶$n$,可以得到具有交换变量的两国纠缠Yang-Baxter映射的层次结构。给出了对偶数$n=1$和$n=2$的层次结构的成员,并讨论了它们的动态性质和可积性,如Lax矩阵、不变量和测度保持性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entwining Yang-Baxter maps over Grassmann algebras
We construct novel solutions to the set-theoretical entwining Yang-Baxter equation. These solutions are birational maps involving non-commutative dynamical variables which are elements of the Grassmann algebra of order $n$. The maps arise from refactorisation problems of Lax supermatrices associated to a nonlinear Schr\"odinger equation. In this non-commutative setting, we construct a spectral curve associated to each of the obtained maps using the characteristic function of its monodromy supermatrix. We find generating functions of invariants (first integrals) for the entwining Yang-Baxter maps from the moduli of the spectral curves. Moreover, we show that a hierarchy of birational entwining Yang-Baxter maps with commutative variables can be obtained by fixing the order $n$ of the Grassmann algebra. We present the members of the hierarchy in the case $n=1$ (dual numbers) and $n=2$, and discuss their dynamical and integrability properties, such as Lax matrices, invariants, and measure preservation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信