XXZ自旋1/2链的热两点函数的类空间渐近性

F. Göhmann, K. K. Kozlowski
{"title":"XXZ自旋1/2链的热两点函数的类空间渐近性","authors":"F. Göhmann, K. K. Kozlowski","doi":"arxiv-2311.17196","DOIUrl":null,"url":null,"abstract":"This work proposes a closed formula for the leading term of the long-distance\nand large-time asymptotics in a cone of the space-like regime for the\ntransverse dynamical two-point functions of the XXZ spin 1/2 chain at finite\ntemperatures. The result follows from a simple analysis of the thermal form\nfactor series for dynamical correlation functions. The leading asymptotics we\nobtain are driven by the Bethe Ansatz data associated with the first\nsub-leading Eigenvalue of the quantum transfer matrix.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Space-like asymptotics of the thermal two-point functions of the XXZ spin-1/2 chain\",\"authors\":\"F. Göhmann, K. K. Kozlowski\",\"doi\":\"arxiv-2311.17196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes a closed formula for the leading term of the long-distance\\nand large-time asymptotics in a cone of the space-like regime for the\\ntransverse dynamical two-point functions of the XXZ spin 1/2 chain at finite\\ntemperatures. The result follows from a simple analysis of the thermal form\\nfactor series for dynamical correlation functions. The leading asymptotics we\\nobtain are driven by the Bethe Ansatz data associated with the first\\nsub-leading Eigenvalue of the quantum transfer matrix.\",\"PeriodicalId\":501592,\"journal\":{\"name\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2311.17196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.17196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了在有限温度下XXZ自旋1/2链的横向动态两点函数在类空间区域锥上的长距离大时间渐近的一个封闭公式。对动力相关函数的热成形因子序列进行了简单分析,得出了上述结论。我们得到的首渐近是由与量子转移矩阵的第一副首特征值相关的Bethe Ansatz数据驱动的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Space-like asymptotics of the thermal two-point functions of the XXZ spin-1/2 chain
This work proposes a closed formula for the leading term of the long-distance and large-time asymptotics in a cone of the space-like regime for the transverse dynamical two-point functions of the XXZ spin 1/2 chain at finite temperatures. The result follows from a simple analysis of the thermal form factor series for dynamical correlation functions. The leading asymptotics we obtain are driven by the Bethe Ansatz data associated with the first sub-leading Eigenvalue of the quantum transfer matrix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信