卡诺群上有限畸变映射的开性和离散性

Pub Date : 2023-11-24 DOI:10.1134/s0037446623060046
S. G. Basalaev, S. K. Vodopyanov
{"title":"卡诺群上有限畸变映射的开性和离散性","authors":"S. G. Basalaev, S. K. Vodopyanov","doi":"10.1134/s0037446623060046","DOIUrl":null,"url":null,"abstract":"<p>We prove that a mapping of finite distortion\n<span>\\( f:\\Omega\\to 𝔾 \\)</span> in a domain <span>\\( \\Omega \\)</span>\nof an <span>\\( H \\)</span>-type Carnot group <span>\\( 𝔾 \\)</span>\nis continuous, open, and discrete provided that\nthe distortion function <span>\\( K(x) \\)</span> of <span>\\( f \\)</span> belongs to <span>\\( L_{p,\\operatorname{loc}}(\\Omega) \\)</span>\nfor some <span>\\( p&gt;\\nu-1 \\)</span>.\nIn fact, the proof is suitable for each Carnot group\nprovided it has a <span>\\( \\nu \\)</span>-harmonic function of the\nform <span>\\( \\log\\rho \\)</span>, where the homogeneous norm\n<span>\\( \\rho \\)</span> is <span>\\( C^{2} \\)</span>-smooth.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Openness and Discreteness of Mappings of Finite Distortion on Carnot Groups\",\"authors\":\"S. G. Basalaev, S. K. Vodopyanov\",\"doi\":\"10.1134/s0037446623060046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that a mapping of finite distortion\\n<span>\\\\( f:\\\\Omega\\\\to 𝔾 \\\\)</span> in a domain <span>\\\\( \\\\Omega \\\\)</span>\\nof an <span>\\\\( H \\\\)</span>-type Carnot group <span>\\\\( 𝔾 \\\\)</span>\\nis continuous, open, and discrete provided that\\nthe distortion function <span>\\\\( K(x) \\\\)</span> of <span>\\\\( f \\\\)</span> belongs to <span>\\\\( L_{p,\\\\operatorname{loc}}(\\\\Omega) \\\\)</span>\\nfor some <span>\\\\( p&gt;\\\\nu-1 \\\\)</span>.\\nIn fact, the proof is suitable for each Carnot group\\nprovided it has a <span>\\\\( \\\\nu \\\\)</span>-harmonic function of the\\nform <span>\\\\( \\\\log\\\\rho \\\\)</span>, where the homogeneous norm\\n<span>\\\\( \\\\rho \\\\)</span> is <span>\\\\( C^{2} \\\\)</span>-smooth.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0037446623060046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446623060046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在\( H \)型卡诺群\( 𝔾 \)的域\( \Omega \)上的有限畸变\( f:\Omega\to 𝔾 \)映射是连续的、开放的、离散的,只要\( f \)的畸变函数\( K(x) \)对于某些\( p>\nu-1 \)属于\( L_{p,\operatorname{loc}}(\Omega) \),实际上,只要每个卡诺群具有\( \nu \) -调和函数\( \log\rho \),这个证明就适用于每个卡诺群。其中齐次范数\( \rho \)为\( C^{2} \) -光滑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Openness and Discreteness of Mappings of Finite Distortion on Carnot Groups

We prove that a mapping of finite distortion \( f:\Omega\to 𝔾 \) in a domain \( \Omega \) of an \( H \)-type Carnot group \( 𝔾 \) is continuous, open, and discrete provided that the distortion function \( K(x) \) of \( f \) belongs to \( L_{p,\operatorname{loc}}(\Omega) \) for some \( p>\nu-1 \). In fact, the proof is suitable for each Carnot group provided it has a \( \nu \)-harmonic function of the form \( \log\rho \), where the homogeneous norm \( \rho \) is \( C^{2} \)-smooth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信