{"title":"韩国成人代谢综合征发病率与红肉和加工肉消费与APOA5基因变异之间的相互作用","authors":"Choi, Woo Jeong, Shin, Dayeon","doi":"10.1186/s12263-022-00707-w","DOIUrl":null,"url":null,"abstract":"Metabolic syndrome (MetS) is characterized by the coexistence of disorders such as diabetes, hypertension, hyperlipidemia, and obesity and is affected by genetic factors. Previous genome-wide association studies (GWAS) suggested that APOA5 gene variants were significantly associated with MetS and its components. Dietary factors such as red and processed meat consumption can cause chronic diseases, including hypertension, diabetes, and vascular depression. The aim of this study was to investigate the modulation of the incidence of MetS by the interaction between APOA5 rs662799 polymorphism and red and processed meat consumption. In this prospective cohort study, 3266 participants were collected from the Korea Association REsource (KARE) cohort of the Korean Genome and Epidemiology Study (KoGES) from 2001 to 2016. APOA5 rs662799 polymorphism was extracted by GWAS using the Korean Chip. Red and processed meat consumption data were assessed using a semi-quantitative food frequency questionnaire. The incidence of MetS in carriers of the minor G allele of rs662799 (AG + GG) and the third tertile of red and processed meat consumption (serving/day) was higher than those with the major allele of rs662799 (AA) and the first tertile of red and processed meat consumption (HR 1.70, 95% CI 1.30–2.22, p interaction = 0.002). An association between the presence of the minor alleles of rs662799 and high red and processed meat consumption and the incidence of MetS was observed in Korean adults.","PeriodicalId":54337,"journal":{"name":"Genes and Nutrition","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactions between red and processed meat consumption and APOA5 gene variants associated with the incidence of metabolic syndrome in Korean adults\",\"authors\":\"Choi, Woo Jeong, Shin, Dayeon\",\"doi\":\"10.1186/s12263-022-00707-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metabolic syndrome (MetS) is characterized by the coexistence of disorders such as diabetes, hypertension, hyperlipidemia, and obesity and is affected by genetic factors. Previous genome-wide association studies (GWAS) suggested that APOA5 gene variants were significantly associated with MetS and its components. Dietary factors such as red and processed meat consumption can cause chronic diseases, including hypertension, diabetes, and vascular depression. The aim of this study was to investigate the modulation of the incidence of MetS by the interaction between APOA5 rs662799 polymorphism and red and processed meat consumption. In this prospective cohort study, 3266 participants were collected from the Korea Association REsource (KARE) cohort of the Korean Genome and Epidemiology Study (KoGES) from 2001 to 2016. APOA5 rs662799 polymorphism was extracted by GWAS using the Korean Chip. Red and processed meat consumption data were assessed using a semi-quantitative food frequency questionnaire. The incidence of MetS in carriers of the minor G allele of rs662799 (AG + GG) and the third tertile of red and processed meat consumption (serving/day) was higher than those with the major allele of rs662799 (AA) and the first tertile of red and processed meat consumption (HR 1.70, 95% CI 1.30–2.22, p interaction = 0.002). An association between the presence of the minor alleles of rs662799 and high red and processed meat consumption and the incidence of MetS was observed in Korean adults.\",\"PeriodicalId\":54337,\"journal\":{\"name\":\"Genes and Nutrition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes and Nutrition\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12263-022-00707-w\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes and Nutrition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12263-022-00707-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Interactions between red and processed meat consumption and APOA5 gene variants associated with the incidence of metabolic syndrome in Korean adults
Metabolic syndrome (MetS) is characterized by the coexistence of disorders such as diabetes, hypertension, hyperlipidemia, and obesity and is affected by genetic factors. Previous genome-wide association studies (GWAS) suggested that APOA5 gene variants were significantly associated with MetS and its components. Dietary factors such as red and processed meat consumption can cause chronic diseases, including hypertension, diabetes, and vascular depression. The aim of this study was to investigate the modulation of the incidence of MetS by the interaction between APOA5 rs662799 polymorphism and red and processed meat consumption. In this prospective cohort study, 3266 participants were collected from the Korea Association REsource (KARE) cohort of the Korean Genome and Epidemiology Study (KoGES) from 2001 to 2016. APOA5 rs662799 polymorphism was extracted by GWAS using the Korean Chip. Red and processed meat consumption data were assessed using a semi-quantitative food frequency questionnaire. The incidence of MetS in carriers of the minor G allele of rs662799 (AG + GG) and the third tertile of red and processed meat consumption (serving/day) was higher than those with the major allele of rs662799 (AA) and the first tertile of red and processed meat consumption (HR 1.70, 95% CI 1.30–2.22, p interaction = 0.002). An association between the presence of the minor alleles of rs662799 and high red and processed meat consumption and the incidence of MetS was observed in Korean adults.
期刊介绍:
This journal examines the relationship between genetics and nutrition, with the ultimate goal of improving human health. It publishes original research articles and review articles on preclinical research data coming largely from animal, cell culture and other experimental models as well as critical evaluations of human experimental data to help deliver products with medically proven use.