Vahid Reza Bagheri, Alireza Yahaghi, Habibollah Abiri
{"title":"使用超表面Luneburg透镜的SWB天线的设计、仿真和构造","authors":"Vahid Reza Bagheri, Alireza Yahaghi, Habibollah Abiri","doi":"10.1007/s40998-023-00666-x","DOIUrl":null,"url":null,"abstract":"<p>In this work, a novel compact antenna with a super-wideband (SWB) feeding (3–43 GHz) is designed. The SWB lens antenna consists of a super-wideband feeding, a parallel plate waveguide (PPW), and a dielectric lens. The flat Luneburg lens has been designed and implemented based on metasurface technology. This antenna can be employed as a sense antenna in ultrawideband (UWB) applications. Attaining a SWB antenna that also grants a high gain in the whole bandwidth is a major issue considered in this work. The introduced structure reveals a very good matching properties (VSWR < 2.15) and also acceptable gain (5–13.5dBi) and very good efficiency (typ. > 83%) in the whole ultrawide bandwidth (3–43GHz). Another important feature of the proposed structure is its capability for being used in multi-beam applications by merely adding some extra feeding ports to it. To show this, the designed lens is fed by three ports placed on its circumference with 30° angular separation. These results show three beam directions in − 30°, + 30°, and 0°, and in addition to its broad bandwidth, excellent impedance matching and close-to-ideal port isolation are achieved.</p>","PeriodicalId":49064,"journal":{"name":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, Simulation, and Construction of a SWB Antenna Using a Metasurface Luneburg LENS\",\"authors\":\"Vahid Reza Bagheri, Alireza Yahaghi, Habibollah Abiri\",\"doi\":\"10.1007/s40998-023-00666-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, a novel compact antenna with a super-wideband (SWB) feeding (3–43 GHz) is designed. The SWB lens antenna consists of a super-wideband feeding, a parallel plate waveguide (PPW), and a dielectric lens. The flat Luneburg lens has been designed and implemented based on metasurface technology. This antenna can be employed as a sense antenna in ultrawideband (UWB) applications. Attaining a SWB antenna that also grants a high gain in the whole bandwidth is a major issue considered in this work. The introduced structure reveals a very good matching properties (VSWR < 2.15) and also acceptable gain (5–13.5dBi) and very good efficiency (typ. > 83%) in the whole ultrawide bandwidth (3–43GHz). Another important feature of the proposed structure is its capability for being used in multi-beam applications by merely adding some extra feeding ports to it. To show this, the designed lens is fed by three ports placed on its circumference with 30° angular separation. These results show three beam directions in − 30°, + 30°, and 0°, and in addition to its broad bandwidth, excellent impedance matching and close-to-ideal port isolation are achieved.</p>\",\"PeriodicalId\":49064,\"journal\":{\"name\":\"Iranian Journal of Science and Technology-Transactions of Electrical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology-Transactions of Electrical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40998-023-00666-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40998-023-00666-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design, Simulation, and Construction of a SWB Antenna Using a Metasurface Luneburg LENS
In this work, a novel compact antenna with a super-wideband (SWB) feeding (3–43 GHz) is designed. The SWB lens antenna consists of a super-wideband feeding, a parallel plate waveguide (PPW), and a dielectric lens. The flat Luneburg lens has been designed and implemented based on metasurface technology. This antenna can be employed as a sense antenna in ultrawideband (UWB) applications. Attaining a SWB antenna that also grants a high gain in the whole bandwidth is a major issue considered in this work. The introduced structure reveals a very good matching properties (VSWR < 2.15) and also acceptable gain (5–13.5dBi) and very good efficiency (typ. > 83%) in the whole ultrawide bandwidth (3–43GHz). Another important feature of the proposed structure is its capability for being used in multi-beam applications by merely adding some extra feeding ports to it. To show this, the designed lens is fed by three ports placed on its circumference with 30° angular separation. These results show three beam directions in − 30°, + 30°, and 0°, and in addition to its broad bandwidth, excellent impedance matching and close-to-ideal port isolation are achieved.
期刊介绍:
Transactions of Electrical Engineering is to foster the growth of scientific research in all branches of electrical engineering and its related grounds and to provide a medium by means of which the fruits of these researches may be brought to the attentionof the world’s scientific communities.
The journal has the focus on the frontier topics in the theoretical, mathematical, numerical, experimental and scientific developments in electrical engineering as well
as applications of established techniques to new domains in various electical engineering disciplines such as:
Bio electric, Bio mechanics, Bio instrument, Microwaves, Wave Propagation, Communication Theory, Channel Estimation, radar & sonar system, Signal Processing, image processing, Artificial Neural Networks, Data Mining and Machine Learning, Fuzzy Logic and Systems, Fuzzy Control, Optimal & Robust ControlNavigation & Estimation Theory, Power Electronics & Drives, Power Generation & Management The editors will welcome papers from all professors and researchers from universities, research centers,
organizations, companies and industries from all over the world in the hope that this will advance the scientific standards of the journal and provide a channel of communication between Iranian Scholars and their colleague in other parts of the world.