{"title":"热带气旋通过斐济时TRMM多卫星降水分析的评价","authors":"Anil Deo, Kevin J. E. Walsh","doi":"10.1071/es16027","DOIUrl":null,"url":null,"abstract":"Fiji is prone to the devastating effects of heavy rainfall during the passage of tropical cyclones (TCs) and as such accurate measurement of rainfall during such events is urgent for effective disaster mitigation and risk analysis. Fiji, however, has a sparse distribution of rain gauges, thus there is a deficiency in the accurate measurement of rainfall. This gap could be filled by satellite-based rainfall estimates but before they are used, they need to be validated against a reference dataset for their accuracy and limitations. This study thus validates the TRMM based Multi-satellite Precipitation Analysis (TMPA) estimates over the island of Fiji. The study shows that TMPA has moderate skill in estimating rainfall during the passage of TCs over the island of Fiji. This skill is also highly variable as it decreases with an increase in rainfall intensity, increase in distance from the cyclone centre and increasing terrain elevation. The ability of TMPA also varies case by case but we report a general underestimation of rainfall by TMPA during the passage of TCs with a larger rainfall rate (defined in our case as those TCs with average daily rainfall greater than 25 mm day-1).","PeriodicalId":55419,"journal":{"name":"Journal of Southern Hemisphere Earth Systems Science","volume":"22 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of TRMM Multi-satellite Precipitation Analysis during the passage of Tropical Cyclones over Fiji\",\"authors\":\"Anil Deo, Kevin J. E. Walsh\",\"doi\":\"10.1071/es16027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fiji is prone to the devastating effects of heavy rainfall during the passage of tropical cyclones (TCs) and as such accurate measurement of rainfall during such events is urgent for effective disaster mitigation and risk analysis. Fiji, however, has a sparse distribution of rain gauges, thus there is a deficiency in the accurate measurement of rainfall. This gap could be filled by satellite-based rainfall estimates but before they are used, they need to be validated against a reference dataset for their accuracy and limitations. This study thus validates the TRMM based Multi-satellite Precipitation Analysis (TMPA) estimates over the island of Fiji. The study shows that TMPA has moderate skill in estimating rainfall during the passage of TCs over the island of Fiji. This skill is also highly variable as it decreases with an increase in rainfall intensity, increase in distance from the cyclone centre and increasing terrain elevation. The ability of TMPA also varies case by case but we report a general underestimation of rainfall by TMPA during the passage of TCs with a larger rainfall rate (defined in our case as those TCs with average daily rainfall greater than 25 mm day-1).\",\"PeriodicalId\":55419,\"journal\":{\"name\":\"Journal of Southern Hemisphere Earth Systems Science\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2021-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Southern Hemisphere Earth Systems Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1071/es16027\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Southern Hemisphere Earth Systems Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1071/es16027","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Evaluation of TRMM Multi-satellite Precipitation Analysis during the passage of Tropical Cyclones over Fiji
Fiji is prone to the devastating effects of heavy rainfall during the passage of tropical cyclones (TCs) and as such accurate measurement of rainfall during such events is urgent for effective disaster mitigation and risk analysis. Fiji, however, has a sparse distribution of rain gauges, thus there is a deficiency in the accurate measurement of rainfall. This gap could be filled by satellite-based rainfall estimates but before they are used, they need to be validated against a reference dataset for their accuracy and limitations. This study thus validates the TRMM based Multi-satellite Precipitation Analysis (TMPA) estimates over the island of Fiji. The study shows that TMPA has moderate skill in estimating rainfall during the passage of TCs over the island of Fiji. This skill is also highly variable as it decreases with an increase in rainfall intensity, increase in distance from the cyclone centre and increasing terrain elevation. The ability of TMPA also varies case by case but we report a general underestimation of rainfall by TMPA during the passage of TCs with a larger rainfall rate (defined in our case as those TCs with average daily rainfall greater than 25 mm day-1).
期刊介绍:
The Journal of Southern Hemisphere Earth Systems Science (JSHESS) publishes broad areas of research with a distinct emphasis on the Southern Hemisphere. The scope of the Journal encompasses the study of the mean state, variability and change of the atmosphere, oceans, and land surface, including the cryosphere, from hemispheric to regional scales.
general circulation of the atmosphere and oceans,
climate change and variability ,
climate impacts,
climate modelling ,
past change in the climate system including palaeoclimate variability,
atmospheric dynamics,
synoptic meteorology,
mesoscale meteorology and severe weather,
tropical meteorology,
observation systems,
remote sensing of atmospheric, oceanic and land surface processes,
weather, climate and ocean prediction,
atmospheric and oceanic composition and chemistry,
physical oceanography,
air‐sea interactions,
coastal zone processes,
hydrology,
cryosphere‐atmosphere interactions,
land surface‐atmosphere interactions,
space weather, including impacts and mitigation on technology,
ionospheric, magnetospheric, auroral and space physics,
data assimilation applied to the above subject areas .
Authors are encouraged to contact the Editor for specific advice on whether the subject matter of a proposed submission is appropriate for the Journal of Southern Hemisphere Earth Systems Science.