{"title":"圆榫嵌入应力下木质结构板的力学性能及影响因素的研究II:用DIC和CT扫描对胶合板和OSB的详细观察","authors":"Ryutaro Sudo, Kenji Aoki","doi":"10.1186/s10086-023-02113-1","DOIUrl":null,"url":null,"abstract":"Although embedment properties are vital to timber engineering, the behavior and strain distributions in wood-based panels have not been clarified in detail. Our early studies suggested four possible causes of failure behavior and strain distribution: (i) two types of failure behavior (in-plane and out-of-plane failure); (ii) enlargement of the stress-spreading range with increasing load step; (iii) reduction of the stress-spreading range (normalized by dowel diameter) with increasing dowel diameter; and (iv) preferential stress spreading in the vertical and horizontal directions along the strong and weak-axis specifications, respectively. However, these hypotheses were not supported by actual observations. The present study aims to observe and clarify the surface strain distribution via digital image correlation and the internal failure behavior via computed tomography scanning. Most results of the wood-based panel specimens (plywood and oriented strand board) did not contradict the above hypotheses. The failure behaviors of plywood and oriented strand board are likely determined by the direction of the veneer fibers and the layer’s position, respectively. Within the strong axial layer of plywood, fibers on both sides of the dowel were densified by fibers dissociated immediately above the dowel, whereas the weak axial layer in plywood was deformed like a timber under partial compression perpendicular to the grain. In contrast, oriented strand board under an embedding stress exhibited a circularly distributed strain and a dispersed void area in its outer layer. Densification was observed only in the inner layer.","PeriodicalId":17664,"journal":{"name":"Journal of Wood Science","volume":"12 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of mechanical properties and elucidation of factors affecting wood-based structural panels under embedment stress with a circular dowel II: detailed observation for plywood and OSB using DIC and CT scanning\",\"authors\":\"Ryutaro Sudo, Kenji Aoki\",\"doi\":\"10.1186/s10086-023-02113-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although embedment properties are vital to timber engineering, the behavior and strain distributions in wood-based panels have not been clarified in detail. Our early studies suggested four possible causes of failure behavior and strain distribution: (i) two types of failure behavior (in-plane and out-of-plane failure); (ii) enlargement of the stress-spreading range with increasing load step; (iii) reduction of the stress-spreading range (normalized by dowel diameter) with increasing dowel diameter; and (iv) preferential stress spreading in the vertical and horizontal directions along the strong and weak-axis specifications, respectively. However, these hypotheses were not supported by actual observations. The present study aims to observe and clarify the surface strain distribution via digital image correlation and the internal failure behavior via computed tomography scanning. Most results of the wood-based panel specimens (plywood and oriented strand board) did not contradict the above hypotheses. The failure behaviors of plywood and oriented strand board are likely determined by the direction of the veneer fibers and the layer’s position, respectively. Within the strong axial layer of plywood, fibers on both sides of the dowel were densified by fibers dissociated immediately above the dowel, whereas the weak axial layer in plywood was deformed like a timber under partial compression perpendicular to the grain. In contrast, oriented strand board under an embedding stress exhibited a circularly distributed strain and a dispersed void area in its outer layer. Densification was observed only in the inner layer.\",\"PeriodicalId\":17664,\"journal\":{\"name\":\"Journal of Wood Science\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wood Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1186/s10086-023-02113-1\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wood Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1186/s10086-023-02113-1","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
Investigation of mechanical properties and elucidation of factors affecting wood-based structural panels under embedment stress with a circular dowel II: detailed observation for plywood and OSB using DIC and CT scanning
Although embedment properties are vital to timber engineering, the behavior and strain distributions in wood-based panels have not been clarified in detail. Our early studies suggested four possible causes of failure behavior and strain distribution: (i) two types of failure behavior (in-plane and out-of-plane failure); (ii) enlargement of the stress-spreading range with increasing load step; (iii) reduction of the stress-spreading range (normalized by dowel diameter) with increasing dowel diameter; and (iv) preferential stress spreading in the vertical and horizontal directions along the strong and weak-axis specifications, respectively. However, these hypotheses were not supported by actual observations. The present study aims to observe and clarify the surface strain distribution via digital image correlation and the internal failure behavior via computed tomography scanning. Most results of the wood-based panel specimens (plywood and oriented strand board) did not contradict the above hypotheses. The failure behaviors of plywood and oriented strand board are likely determined by the direction of the veneer fibers and the layer’s position, respectively. Within the strong axial layer of plywood, fibers on both sides of the dowel were densified by fibers dissociated immediately above the dowel, whereas the weak axial layer in plywood was deformed like a timber under partial compression perpendicular to the grain. In contrast, oriented strand board under an embedding stress exhibited a circularly distributed strain and a dispersed void area in its outer layer. Densification was observed only in the inner layer.
期刊介绍:
The Journal of Wood Science is the official journal of the Japan Wood Research Society. This journal provides an international forum for the exchange of knowledge and the discussion of current issues in wood and its utilization. The journal publishes original articles on basic and applied research dealing with the science, technology, and engineering of wood, wood components, wood and wood-based products, and wood constructions. Articles concerned with pulp and paper, fiber resources from non-woody plants, wood-inhabiting insects and fungi, wood biomass, and environmental and ecological issues in forest products are also included. In addition to original articles, the journal publishes review articles on selected topics concerning wood science and related fields. The editors welcome the submission of manuscripts from any country.