{"title":"节点加权中心性:一种新的中心性杂交方法","authors":"Anuj Singh, Rishi Ranjan Singh, S. R. S. Iyengar","doi":"10.1186/s40649-020-00081-w","DOIUrl":null,"url":null,"abstract":"Centrality measures have been proved to be a salient computational science tool for analyzing networks in the last two to three decades aiding many problems in the domain of computer science, economics, physics, and sociology. With increasing complexity and vividness in the network analysis problems, there is a need to modify the existing traditional centrality measures. Weighted centrality measures usually consider weights on the edges and assume the weights on the nodes to be uniform. One of the main reasons for this assumption is the hardness and challenges in mapping the nodes to their corresponding weights. In this paper, we propose a way to overcome this kind of limitation by hybridization of the traditional centrality measures. The hybridization is done by taking one of the centrality measures as a mapping function to generate weights on the nodes and then using the node weights in other centrality measures for better complex ranking.","PeriodicalId":52145,"journal":{"name":"Computational Social Networks","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Node-weighted centrality: a new way of centrality hybridization\",\"authors\":\"Anuj Singh, Rishi Ranjan Singh, S. R. S. Iyengar\",\"doi\":\"10.1186/s40649-020-00081-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Centrality measures have been proved to be a salient computational science tool for analyzing networks in the last two to three decades aiding many problems in the domain of computer science, economics, physics, and sociology. With increasing complexity and vividness in the network analysis problems, there is a need to modify the existing traditional centrality measures. Weighted centrality measures usually consider weights on the edges and assume the weights on the nodes to be uniform. One of the main reasons for this assumption is the hardness and challenges in mapping the nodes to their corresponding weights. In this paper, we propose a way to overcome this kind of limitation by hybridization of the traditional centrality measures. The hybridization is done by taking one of the centrality measures as a mapping function to generate weights on the nodes and then using the node weights in other centrality measures for better complex ranking.\",\"PeriodicalId\":52145,\"journal\":{\"name\":\"Computational Social Networks\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Social Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40649-020-00081-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40649-020-00081-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Node-weighted centrality: a new way of centrality hybridization
Centrality measures have been proved to be a salient computational science tool for analyzing networks in the last two to three decades aiding many problems in the domain of computer science, economics, physics, and sociology. With increasing complexity and vividness in the network analysis problems, there is a need to modify the existing traditional centrality measures. Weighted centrality measures usually consider weights on the edges and assume the weights on the nodes to be uniform. One of the main reasons for this assumption is the hardness and challenges in mapping the nodes to their corresponding weights. In this paper, we propose a way to overcome this kind of limitation by hybridization of the traditional centrality measures. The hybridization is done by taking one of the centrality measures as a mapping function to generate weights on the nodes and then using the node weights in other centrality measures for better complex ranking.
期刊介绍:
Computational Social Networks showcases refereed papers dealing with all mathematical, computational and applied aspects of social computing. The objective of this journal is to advance and promote the theoretical foundation, mathematical aspects, and applications of social computing. Submissions are welcome which focus on common principles, algorithms and tools that govern network structures/topologies, network functionalities, security and privacy, network behaviors, information diffusions and influence, social recommendation systems which are applicable to all types of social networks and social media. Topics include (but are not limited to) the following: -Social network design and architecture -Mathematical modeling and analysis -Real-world complex networks -Information retrieval in social contexts, political analysts -Network structure analysis -Network dynamics optimization -Complex network robustness and vulnerability -Information diffusion models and analysis -Security and privacy -Searching in complex networks -Efficient algorithms -Network behaviors -Trust and reputation -Social Influence -Social Recommendation -Social media analysis -Big data analysis on online social networks This journal publishes rigorously refereed papers dealing with all mathematical, computational and applied aspects of social computing. The journal also includes reviews of appropriate books as special issues on hot topics.