鞘层等离子体中表达粒子速度和能量的Maxwell-Boltzmann和Druyvesteyn分布函数

Pub Date : 2023-11-23 DOI:10.1007/s10946-023-10157-3
Pawan K. Tiwari, Ravindra Kumar, Kritika Halder, Yeon Soo Lee
{"title":"鞘层等离子体中表达粒子速度和能量的Maxwell-Boltzmann和Druyvesteyn分布函数","authors":"Pawan K. Tiwari,&nbsp;Ravindra Kumar,&nbsp;Kritika Halder,&nbsp;Yeon Soo Lee","doi":"10.1007/s10946-023-10157-3","DOIUrl":null,"url":null,"abstract":"<div><p>The energy distribution of particles in a gaseous system is well understood through the implementation of a statistical tool, namely, the Maxwell–Boltzmann distribution function in the velocity–space coordinate system. The Maxwell–Boltzmann distribution function is utilized to investigate the velocity distribution of plasma particles like electrons, assuming that their collision frequency does not depend on the velocity. However, there is a swift transition in converting the Maxwell–Boltzmann distribution function to the Druyvesteyn distribution function for the case where a collision frequency is directly proportional to the velocity. Our aim is to incorporate the frequency components to investigate the Maxwell–Boltzmann and Druyvesteyn distribution functions. Employing the equation of motion, we observe that the collisional electron velocity is equal to the equilibrium electron velocity <i>∼eE/m</i><sub><i>e</i></sub><i>ω</i> multiplied by the collisional frequency over the external source frequency <i>β</i> = <i>ν/ω</i> corresponding to the externally applied electric field. We investigate the difference in the Druyvesteyn distribution function between sheath and pre-sheath regions, when a stream of electrons is traversing or effusing through the part of a pre-sheath region corresponding to the dimension of the order of mean free path. Velocity and corresponding energy distribution functions are compared for non-effusion and effusion cases in the collisional and non-collisional regimes. The Maxwell–Boltzmann and Druyvesteyn velocity and energy distributions are competitive when the collisional frequency is twice the frequency of the applied electric field.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maxwell–Boltzmann and Druyvesteyn Distribution Functions Expressing the Particle Velocity and the Energy in Sheath Plasmas\",\"authors\":\"Pawan K. Tiwari,&nbsp;Ravindra Kumar,&nbsp;Kritika Halder,&nbsp;Yeon Soo Lee\",\"doi\":\"10.1007/s10946-023-10157-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The energy distribution of particles in a gaseous system is well understood through the implementation of a statistical tool, namely, the Maxwell–Boltzmann distribution function in the velocity–space coordinate system. The Maxwell–Boltzmann distribution function is utilized to investigate the velocity distribution of plasma particles like electrons, assuming that their collision frequency does not depend on the velocity. However, there is a swift transition in converting the Maxwell–Boltzmann distribution function to the Druyvesteyn distribution function for the case where a collision frequency is directly proportional to the velocity. Our aim is to incorporate the frequency components to investigate the Maxwell–Boltzmann and Druyvesteyn distribution functions. Employing the equation of motion, we observe that the collisional electron velocity is equal to the equilibrium electron velocity <i>∼eE/m</i><sub><i>e</i></sub><i>ω</i> multiplied by the collisional frequency over the external source frequency <i>β</i> = <i>ν/ω</i> corresponding to the externally applied electric field. We investigate the difference in the Druyvesteyn distribution function between sheath and pre-sheath regions, when a stream of electrons is traversing or effusing through the part of a pre-sheath region corresponding to the dimension of the order of mean free path. Velocity and corresponding energy distribution functions are compared for non-effusion and effusion cases in the collisional and non-collisional regimes. The Maxwell–Boltzmann and Druyvesteyn velocity and energy distributions are competitive when the collisional frequency is twice the frequency of the applied electric field.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10946-023-10157-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10946-023-10157-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过实现一个统计工具,即在速度-空间坐标系中的麦克斯韦-玻尔兹曼分布函数,可以很好地理解气体系统中粒子的能量分布。利用麦克斯韦-玻尔兹曼分布函数研究了电子等等离子体粒子的速度分布,假设它们的碰撞频率不依赖于速度。然而,在碰撞频率与速度成正比的情况下,将麦克斯韦-玻尔兹曼分布函数转换为Druyvesteyn分布函数有一个迅速的转变。我们的目标是结合频率分量来研究麦克斯韦-玻尔兹曼和德鲁伊维斯特恩分布函数。利用运动方程,我们观察到碰撞电子速度等于平衡电子速度~ eE/meω乘以与外源电场对应的碰撞频率β = ν/ω。我们研究了当一束电子流穿过或流出鞘层前区域时鞘层和鞘层前区域之间的Druyvesteyn分布函数的差异,该分布函数对应于平均自由程的阶数。比较了碰撞和非碰撞状态下的速度分布函数和相应的能量分布函数。当碰撞频率为外加电场频率的两倍时,麦克斯韦-玻尔兹曼和德鲁伊维斯泰因的速度和能量分布是竞争的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Maxwell–Boltzmann and Druyvesteyn Distribution Functions Expressing the Particle Velocity and the Energy in Sheath Plasmas

The energy distribution of particles in a gaseous system is well understood through the implementation of a statistical tool, namely, the Maxwell–Boltzmann distribution function in the velocity–space coordinate system. The Maxwell–Boltzmann distribution function is utilized to investigate the velocity distribution of plasma particles like electrons, assuming that their collision frequency does not depend on the velocity. However, there is a swift transition in converting the Maxwell–Boltzmann distribution function to the Druyvesteyn distribution function for the case where a collision frequency is directly proportional to the velocity. Our aim is to incorporate the frequency components to investigate the Maxwell–Boltzmann and Druyvesteyn distribution functions. Employing the equation of motion, we observe that the collisional electron velocity is equal to the equilibrium electron velocity ∼eE/meω multiplied by the collisional frequency over the external source frequency β = ν/ω corresponding to the externally applied electric field. We investigate the difference in the Druyvesteyn distribution function between sheath and pre-sheath regions, when a stream of electrons is traversing or effusing through the part of a pre-sheath region corresponding to the dimension of the order of mean free path. Velocity and corresponding energy distribution functions are compared for non-effusion and effusion cases in the collisional and non-collisional regimes. The Maxwell–Boltzmann and Druyvesteyn velocity and energy distributions are competitive when the collisional frequency is twice the frequency of the applied electric field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信