Moreno-Sandoval, Luis G., Pomares-Quimbaya, Alexandra, Alvarado-Valencia, Jorge A.
{"title":"通过数字社交网络的语言分析来分析名人","authors":"Moreno-Sandoval, Luis G., Pomares-Quimbaya, Alexandra, Alvarado-Valencia, Jorge A.","doi":"10.1186/s40649-021-00097-w","DOIUrl":null,"url":null,"abstract":"Digital social networks have become an essential source of information because celebrities use them to share their opinions, ideas, thoughts, and feelings. This makes digital social networks one of the preferred means for celebrities to promote themselves and attract new followers. This paper proposes a model of feature selection for the classification of celebrities profiles based on their use of a digital social network Twitter. The model includes the analysis of lexical, syntactic, symbolic, participation, and complementary information features of the posts of celebrities to estimate, based on these, their demographic and influence characteristics. The classification with these new features has an F1-score of 0.65 in Fame, 0.88 in Gender, 0.37 in Birth year, and 0.57 in Occupation. With these new features, the average accuracy improve up to 0.14 more. As a result, extracted features from linguistic cues improved the performance of predictive models of Fame and Gender and facilitate explanations of the model results. Particularly, the use of the third person singular was highly predictive in the model of Fame.","PeriodicalId":52145,"journal":{"name":"Computational Social Networks","volume":"93 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Celebrity profiling through linguistic analysis of digital social networks\",\"authors\":\"Moreno-Sandoval, Luis G., Pomares-Quimbaya, Alexandra, Alvarado-Valencia, Jorge A.\",\"doi\":\"10.1186/s40649-021-00097-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital social networks have become an essential source of information because celebrities use them to share their opinions, ideas, thoughts, and feelings. This makes digital social networks one of the preferred means for celebrities to promote themselves and attract new followers. This paper proposes a model of feature selection for the classification of celebrities profiles based on their use of a digital social network Twitter. The model includes the analysis of lexical, syntactic, symbolic, participation, and complementary information features of the posts of celebrities to estimate, based on these, their demographic and influence characteristics. The classification with these new features has an F1-score of 0.65 in Fame, 0.88 in Gender, 0.37 in Birth year, and 0.57 in Occupation. With these new features, the average accuracy improve up to 0.14 more. As a result, extracted features from linguistic cues improved the performance of predictive models of Fame and Gender and facilitate explanations of the model results. Particularly, the use of the third person singular was highly predictive in the model of Fame.\",\"PeriodicalId\":52145,\"journal\":{\"name\":\"Computational Social Networks\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Social Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40649-021-00097-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40649-021-00097-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Celebrity profiling through linguistic analysis of digital social networks
Digital social networks have become an essential source of information because celebrities use them to share their opinions, ideas, thoughts, and feelings. This makes digital social networks one of the preferred means for celebrities to promote themselves and attract new followers. This paper proposes a model of feature selection for the classification of celebrities profiles based on their use of a digital social network Twitter. The model includes the analysis of lexical, syntactic, symbolic, participation, and complementary information features of the posts of celebrities to estimate, based on these, their demographic and influence characteristics. The classification with these new features has an F1-score of 0.65 in Fame, 0.88 in Gender, 0.37 in Birth year, and 0.57 in Occupation. With these new features, the average accuracy improve up to 0.14 more. As a result, extracted features from linguistic cues improved the performance of predictive models of Fame and Gender and facilitate explanations of the model results. Particularly, the use of the third person singular was highly predictive in the model of Fame.
期刊介绍:
Computational Social Networks showcases refereed papers dealing with all mathematical, computational and applied aspects of social computing. The objective of this journal is to advance and promote the theoretical foundation, mathematical aspects, and applications of social computing. Submissions are welcome which focus on common principles, algorithms and tools that govern network structures/topologies, network functionalities, security and privacy, network behaviors, information diffusions and influence, social recommendation systems which are applicable to all types of social networks and social media. Topics include (but are not limited to) the following: -Social network design and architecture -Mathematical modeling and analysis -Real-world complex networks -Information retrieval in social contexts, political analysts -Network structure analysis -Network dynamics optimization -Complex network robustness and vulnerability -Information diffusion models and analysis -Security and privacy -Searching in complex networks -Efficient algorithms -Network behaviors -Trust and reputation -Social Influence -Social Recommendation -Social media analysis -Big data analysis on online social networks This journal publishes rigorously refereed papers dealing with all mathematical, computational and applied aspects of social computing. The journal also includes reviews of appropriate books as special issues on hot topics.