Yanzhao Li, Christina Pyromali, Flanco Zhuge, Charles-André Fustin, Jean-François Gohy, Dimitris Vlassopoulos, Evelyne van Ruymbeke
{"title":"不同寿命黏贴相结合的金属超分子聚合物纠缠网络动力学","authors":"Yanzhao Li, Christina Pyromali, Flanco Zhuge, Charles-André Fustin, Jean-François Gohy, Dimitris Vlassopoulos, Evelyne van Ruymbeke","doi":"10.1122/8.0000418","DOIUrl":null,"url":null,"abstract":"We study the linear viscoelastic properties of polymeric networks formed by poly(<i>n</i>-butyl acrylate) telechelic stars end-capped with 2,2:6,2″-terpyridine (Star-PnBA-tpy4) and two types of metal-ligand cross-links with different lifetimes. The influence of interactions, mediated by temperature, nature of metal ions, and ion content, on the linear viscoelastic behavior of both single and double dynamics transient networks is systematically investigated by small amplitude oscillatory shear and creep rheometry. The experimental results reveal that the dynamics of networks with two different metal-ligand cross-links is much faster than expected, characterized by the average sticker lifetime rather than a discrete contribution of each metal-ligand complex. We model the dynamics with the help of our modified tube-based time marching algorithm by accounting for both association/dissociation dynamics of metal-ligand coordination and the entanglement dynamics. Two parameters are defined in the model, namely, the proportion of dangling ends and the average time during which a sticker is free. This allows us to quantify the transient dynamics of the network and, in particular, to determine how the sticker dynamics depend on temperature and ion content.","PeriodicalId":16991,"journal":{"name":"Journal of Rheology","volume":"193 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of entangled metallosupramolecular polymer networks combining stickers with different lifetimes\",\"authors\":\"Yanzhao Li, Christina Pyromali, Flanco Zhuge, Charles-André Fustin, Jean-François Gohy, Dimitris Vlassopoulos, Evelyne van Ruymbeke\",\"doi\":\"10.1122/8.0000418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the linear viscoelastic properties of polymeric networks formed by poly(<i>n</i>-butyl acrylate) telechelic stars end-capped with 2,2:6,2″-terpyridine (Star-PnBA-tpy4) and two types of metal-ligand cross-links with different lifetimes. The influence of interactions, mediated by temperature, nature of metal ions, and ion content, on the linear viscoelastic behavior of both single and double dynamics transient networks is systematically investigated by small amplitude oscillatory shear and creep rheometry. The experimental results reveal that the dynamics of networks with two different metal-ligand cross-links is much faster than expected, characterized by the average sticker lifetime rather than a discrete contribution of each metal-ligand complex. We model the dynamics with the help of our modified tube-based time marching algorithm by accounting for both association/dissociation dynamics of metal-ligand coordination and the entanglement dynamics. Two parameters are defined in the model, namely, the proportion of dangling ends and the average time during which a sticker is free. This allows us to quantify the transient dynamics of the network and, in particular, to determine how the sticker dynamics depend on temperature and ion content.\",\"PeriodicalId\":16991,\"journal\":{\"name\":\"Journal of Rheology\",\"volume\":\"193 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rheology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1122/8.0000418\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rheology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1122/8.0000418","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Dynamics of entangled metallosupramolecular polymer networks combining stickers with different lifetimes
We study the linear viscoelastic properties of polymeric networks formed by poly(n-butyl acrylate) telechelic stars end-capped with 2,2:6,2″-terpyridine (Star-PnBA-tpy4) and two types of metal-ligand cross-links with different lifetimes. The influence of interactions, mediated by temperature, nature of metal ions, and ion content, on the linear viscoelastic behavior of both single and double dynamics transient networks is systematically investigated by small amplitude oscillatory shear and creep rheometry. The experimental results reveal that the dynamics of networks with two different metal-ligand cross-links is much faster than expected, characterized by the average sticker lifetime rather than a discrete contribution of each metal-ligand complex. We model the dynamics with the help of our modified tube-based time marching algorithm by accounting for both association/dissociation dynamics of metal-ligand coordination and the entanglement dynamics. Two parameters are defined in the model, namely, the proportion of dangling ends and the average time during which a sticker is free. This allows us to quantify the transient dynamics of the network and, in particular, to determine how the sticker dynamics depend on temperature and ion content.
期刊介绍:
The Journal of Rheology, formerly the Transactions of The Society of Rheology, is published six times per year by The Society of Rheology, a member society of the American Institute of Physics, through AIP Publishing. It provides in-depth interdisciplinary coverage of theoretical and experimental issues drawn from industry and academia. The Journal of Rheology is published for professionals and students in chemistry, physics, engineering, material science, and mathematics.