一般分布族的两个有限混合的随机比较

Pub Date : 2023-11-20 DOI:10.1007/s00184-023-00930-4
Raju Bhakta, Priyanka Majumder, Suchandan Kayal, Narayanaswamy Balakrishnan
{"title":"一般分布族的两个有限混合的随机比较","authors":"Raju Bhakta, Priyanka Majumder, Suchandan Kayal, Narayanaswamy Balakrishnan","doi":"10.1007/s00184-023-00930-4","DOIUrl":null,"url":null,"abstract":"<p>We consider here two finite (arithmetic) mixture models (FMMs) with general parametric family of distributions. Sufficient conditions for the usual stochastic order and hazard rate order are then established under the assumption that the model parameter vectors are connected in <i>p</i>-larger order, reciprocal majorization order and weak super/sub majorization order. Furthermore, we establish hazard rate order and reversed hazard rate order between two mixture random variables (MRVs) when a matrix of model parameters and mixing proportions changes to another matrix in some mathematical sense. We have also considered scale family of distributions to establish some sufficient conditions under which the MRVs have hazard rate order. Several examples are presented to illustrate and clarify all the results established here.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stochastic comparisons of two finite mixtures of general family of distributions\",\"authors\":\"Raju Bhakta, Priyanka Majumder, Suchandan Kayal, Narayanaswamy Balakrishnan\",\"doi\":\"10.1007/s00184-023-00930-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider here two finite (arithmetic) mixture models (FMMs) with general parametric family of distributions. Sufficient conditions for the usual stochastic order and hazard rate order are then established under the assumption that the model parameter vectors are connected in <i>p</i>-larger order, reciprocal majorization order and weak super/sub majorization order. Furthermore, we establish hazard rate order and reversed hazard rate order between two mixture random variables (MRVs) when a matrix of model parameters and mixing proportions changes to another matrix in some mathematical sense. We have also considered scale family of distributions to establish some sufficient conditions under which the MRVs have hazard rate order. Several examples are presented to illustrate and clarify all the results established here.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00184-023-00930-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-023-00930-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文考虑了两种具有一般参数分布族的有限(算术)混合模型。然后,在模型参数向量以p-大阶、倒数最大阶和弱上/下最大阶连接的假设下,建立了通常随机阶和危害率阶的充分条件。在此基础上,从数学意义上建立了由模型参数和混合比例组成的矩阵变为另一个矩阵时,两个混合随机变量(mrv)之间的风险率序和反向风险率序。我们还考虑了分布的尺度族,以建立mrv具有危险率顺序的一些充分条件。给出了几个例子来说明和澄清这里建立的所有结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stochastic comparisons of two finite mixtures of general family of distributions

分享
查看原文
Stochastic comparisons of two finite mixtures of general family of distributions

We consider here two finite (arithmetic) mixture models (FMMs) with general parametric family of distributions. Sufficient conditions for the usual stochastic order and hazard rate order are then established under the assumption that the model parameter vectors are connected in p-larger order, reciprocal majorization order and weak super/sub majorization order. Furthermore, we establish hazard rate order and reversed hazard rate order between two mixture random variables (MRVs) when a matrix of model parameters and mixing proportions changes to another matrix in some mathematical sense. We have also considered scale family of distributions to establish some sufficient conditions under which the MRVs have hazard rate order. Several examples are presented to illustrate and clarify all the results established here.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信