通过文本评论选择产品:在前景理论中结合个性化启发式判断的MCDM方法

IF 4.8 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Meng Zhao, Xinyuan Shen, Huchang Liao, Mingyao Cai
{"title":"通过文本评论选择产品:在前景理论中结合个性化启发式判断的MCDM方法","authors":"Meng Zhao, Xinyuan Shen, Huchang Liao, Mingyao Cai","doi":"10.1007/s10700-021-09359-8","DOIUrl":null,"url":null,"abstract":"<p>Online reviews have become an increasingly popular information source in consumer’s decision making process. To help consumers make informed decisions, how to select products through online reviews is a valuable research topic. This work deals with a personized product selection problem with review sentiments under probabilistic linguistic circumstances. To this end, we propose a multi-criteria decision making (MCDM) method incorporating personalized heuristic judgments in the prospect theory (PT). We focus on the role of personalized heuristic judgments on review helpfulness in the final decision outcomes. We demonstrate the consistency between the three common heuristic judgments (with respect to review valence, sentiment extremity, and aspiration levels) and the three behavioral principles of the PT. Then, the products are ranked with the probabilistic linguistic term set (PLTS) input, based on the proposed adjustable PT framework, in which the coefficients of negativity bias are derived from the consumer’s heuristic judgments. Finally, a real case on TripAdvisor.com and two simulation experiments are given to illustrate the validity of the proposed method.</p>","PeriodicalId":55131,"journal":{"name":"Fuzzy Optimization and Decision Making","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2021-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Selecting products through text reviews: An MCDM method incorporating personalized heuristic judgments in the prospect theory\",\"authors\":\"Meng Zhao, Xinyuan Shen, Huchang Liao, Mingyao Cai\",\"doi\":\"10.1007/s10700-021-09359-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Online reviews have become an increasingly popular information source in consumer’s decision making process. To help consumers make informed decisions, how to select products through online reviews is a valuable research topic. This work deals with a personized product selection problem with review sentiments under probabilistic linguistic circumstances. To this end, we propose a multi-criteria decision making (MCDM) method incorporating personalized heuristic judgments in the prospect theory (PT). We focus on the role of personalized heuristic judgments on review helpfulness in the final decision outcomes. We demonstrate the consistency between the three common heuristic judgments (with respect to review valence, sentiment extremity, and aspiration levels) and the three behavioral principles of the PT. Then, the products are ranked with the probabilistic linguistic term set (PLTS) input, based on the proposed adjustable PT framework, in which the coefficients of negativity bias are derived from the consumer’s heuristic judgments. Finally, a real case on TripAdvisor.com and two simulation experiments are given to illustrate the validity of the proposed method.</p>\",\"PeriodicalId\":55131,\"journal\":{\"name\":\"Fuzzy Optimization and Decision Making\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2021-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuzzy Optimization and Decision Making\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10700-021-09359-8\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Optimization and Decision Making","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10700-021-09359-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 15

摘要

在线评论已经成为消费者决策过程中越来越受欢迎的信息来源。为了帮助消费者做出明智的决定,如何通过在线评论来选择产品是一个有价值的研究课题。本文研究了概率语言环境下带有评论情绪的个性化产品选择问题。为此,我们提出了一种结合前景理论中个性化启发式判断的多准则决策(MCDM)方法。我们关注个性化启发式判断在最终决策结果中对审查有用性的作用。我们证明了三种常见的启发式判断(关于评价、情绪极端和期望水平)与PT的三种行为原则之间的一致性。然后,基于所提出的可调PT框架,使用概率语言术语集(PLTS)输入对产品进行排序,其中负性偏差系数来自消费者的启发式判断。最后,通过TripAdvisor.com的一个实际案例和两个仿真实验验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Selecting products through text reviews: An MCDM method incorporating personalized heuristic judgments in the prospect theory

Online reviews have become an increasingly popular information source in consumer’s decision making process. To help consumers make informed decisions, how to select products through online reviews is a valuable research topic. This work deals with a personized product selection problem with review sentiments under probabilistic linguistic circumstances. To this end, we propose a multi-criteria decision making (MCDM) method incorporating personalized heuristic judgments in the prospect theory (PT). We focus on the role of personalized heuristic judgments on review helpfulness in the final decision outcomes. We demonstrate the consistency between the three common heuristic judgments (with respect to review valence, sentiment extremity, and aspiration levels) and the three behavioral principles of the PT. Then, the products are ranked with the probabilistic linguistic term set (PLTS) input, based on the proposed adjustable PT framework, in which the coefficients of negativity bias are derived from the consumer’s heuristic judgments. Finally, a real case on TripAdvisor.com and two simulation experiments are given to illustrate the validity of the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuzzy Optimization and Decision Making
Fuzzy Optimization and Decision Making 工程技术-计算机:人工智能
CiteScore
11.50
自引率
10.60%
发文量
27
审稿时长
6 months
期刊介绍: The key objective of Fuzzy Optimization and Decision Making is to promote research and the development of fuzzy technology and soft-computing methodologies to enhance our ability to address complicated optimization and decision making problems involving non-probabilitic uncertainty. The journal will cover all aspects of employing fuzzy technologies to see optimal solutions and assist in making the best possible decisions. It will provide a global forum for advancing the state-of-the-art theory and practice of fuzzy optimization and decision making in the presence of uncertainty. Any theoretical, empirical, and experimental work related to fuzzy modeling and associated mathematics, solution methods, and systems is welcome. The goal is to help foster the understanding, development, and practice of fuzzy technologies for solving economic, engineering, management, and societal problems. The journal will provide a forum for authors and readers in the fields of business, economics, engineering, mathematics, management science, operations research, and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信