Guipeng Feng, Jie Meng, Shaohong Xu, Chenqian Wang, Xubin Yao, Xinzi Nie
{"title":"无留下基团重氮羰基化合物与烯酮[3+2]环加成反应合成吡唑的机理研究","authors":"Guipeng Feng, Jie Meng, Shaohong Xu, Chenqian Wang, Xubin Yao, Xinzi Nie","doi":"10.1002/poc.4591","DOIUrl":null,"url":null,"abstract":"<p>On the basis of the density functional theory (DFT), the process of cycloaddition reaction of diazocarbonyl compounds with enones without leaving groups to obtain pyrazoles was proposed. First, the diazocarbonyl compounds reacted with enones to offer the intermediates by cycloaddition reaction, which was captured of hydrogen of the intermediate by the base to offer the nonaromatic pyrazole intermediate, which then give the final product by oxidation and isomerization in the air. This protocol corrected the reaction mechanism that was proposed in the experimental section. The negative correlation between the yields of products with the charges of ADCH at the C1 position of enones was also founded, which was consistent with the experimental results. The protocol could provide theoretical guidance for designing more efficient cycloaddition reaction.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the synthesis mechanism of pyrazoles via [3+2] cycloaddition reaction of diazocarbonyl compounds with enones without leaving groups\",\"authors\":\"Guipeng Feng, Jie Meng, Shaohong Xu, Chenqian Wang, Xubin Yao, Xinzi Nie\",\"doi\":\"10.1002/poc.4591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>On the basis of the density functional theory (DFT), the process of cycloaddition reaction of diazocarbonyl compounds with enones without leaving groups to obtain pyrazoles was proposed. First, the diazocarbonyl compounds reacted with enones to offer the intermediates by cycloaddition reaction, which was captured of hydrogen of the intermediate by the base to offer the nonaromatic pyrazole intermediate, which then give the final product by oxidation and isomerization in the air. This protocol corrected the reaction mechanism that was proposed in the experimental section. The negative correlation between the yields of products with the charges of ADCH at the C1 position of enones was also founded, which was consistent with the experimental results. The protocol could provide theoretical guidance for designing more efficient cycloaddition reaction.</p>\",\"PeriodicalId\":16829,\"journal\":{\"name\":\"Journal of Physical Organic Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physical Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/poc.4591\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/poc.4591","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Study on the synthesis mechanism of pyrazoles via [3+2] cycloaddition reaction of diazocarbonyl compounds with enones without leaving groups
On the basis of the density functional theory (DFT), the process of cycloaddition reaction of diazocarbonyl compounds with enones without leaving groups to obtain pyrazoles was proposed. First, the diazocarbonyl compounds reacted with enones to offer the intermediates by cycloaddition reaction, which was captured of hydrogen of the intermediate by the base to offer the nonaromatic pyrazole intermediate, which then give the final product by oxidation and isomerization in the air. This protocol corrected the reaction mechanism that was proposed in the experimental section. The negative correlation between the yields of products with the charges of ADCH at the C1 position of enones was also founded, which was consistent with the experimental results. The protocol could provide theoretical guidance for designing more efficient cycloaddition reaction.
期刊介绍:
The Journal of Physical Organic Chemistry is the foremost international journal devoted to the relationship between molecular structure and chemical reactivity in organic systems. It publishes Research Articles, Reviews and Mini Reviews based on research striving to understand the principles governing chemical structures in relation to activity and transformation with physical and mathematical rigor, using results derived from experimental and computational methods. Physical Organic Chemistry is a central and fundamental field with multiple applications in fields such as molecular recognition, supramolecular chemistry, catalysis, photochemistry, biological and material sciences, nanotechnology and surface science.