Anuj Kuma, Ram K. Gupta, Nangan Senthilkumar, Bidhan Pandit, Abdullah M. Al-Enizi, Mohd Ubaidullah
{"title":"双原子斑岩分子体系作为N2还原反应高效电催化剂的理论研究","authors":"Anuj Kuma, Ram K. Gupta, Nangan Senthilkumar, Bidhan Pandit, Abdullah M. Al-Enizi, Mohd Ubaidullah","doi":"10.1007/s12678-023-00855-6","DOIUrl":null,"url":null,"abstract":"<div><p>Metallo-porphyry-based frameworks have been utilized to construct single-atom catalysts (SACs), but their use in the fabrication of dual-atom catalysts (DACs) for the nitrogen reduction reaction (NRR) electrocatalytically is limited. Herein, a binuclear phthalocyanine (bN-Pc) was assessed based on a theoretical model to construct dual-atom systems (MoMo-bN-Pc, WW-bN-Pc, and MoW-bN-Pc) along with NRR activity and respective mechanisms, exploiting density functional theory (DFT) calculations. A cis-bridged N<sub>2</sub>-adduct, with N-atoms coordinating on both sides, resulted in these dual-atom systems, keeping adjacent metals in close proximity. Gibbs free energy studies revealed that the potential-determining step (PDS) for these catalysts appeared to be the protonation of adsorbed N<sub>2</sub> on dual-atom sites (*N<sub>2</sub>H). Following the enzymatic pathway, MoW-bN-Pc had the lowest limiting potential (− 0.32 V) than other systems, indicating its higher NRR activity. The synergistic orbital coupling between Mo(4d) and W(5d) due to their intimate proximity significantly raised the energy of the highest occupied molecular orbital of Mo to facilitate the electron donation to the antibonding orbital of N<sub>2</sub>, endowing the NRR of MoW-bN-Pc as compared to other systems. This work is sure to create interest for future studies on the construction of DAC-based active sites using molecular models.</p></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"15 1","pages":"87 - 95"},"PeriodicalIF":2.7000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-Atomic Porphyry Molecular Systems as Efficient Electrocatalysts for N2 Reduction Reaction: a Theoretical Investigation\",\"authors\":\"Anuj Kuma, Ram K. Gupta, Nangan Senthilkumar, Bidhan Pandit, Abdullah M. Al-Enizi, Mohd Ubaidullah\",\"doi\":\"10.1007/s12678-023-00855-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metallo-porphyry-based frameworks have been utilized to construct single-atom catalysts (SACs), but their use in the fabrication of dual-atom catalysts (DACs) for the nitrogen reduction reaction (NRR) electrocatalytically is limited. Herein, a binuclear phthalocyanine (bN-Pc) was assessed based on a theoretical model to construct dual-atom systems (MoMo-bN-Pc, WW-bN-Pc, and MoW-bN-Pc) along with NRR activity and respective mechanisms, exploiting density functional theory (DFT) calculations. A cis-bridged N<sub>2</sub>-adduct, with N-atoms coordinating on both sides, resulted in these dual-atom systems, keeping adjacent metals in close proximity. Gibbs free energy studies revealed that the potential-determining step (PDS) for these catalysts appeared to be the protonation of adsorbed N<sub>2</sub> on dual-atom sites (*N<sub>2</sub>H). Following the enzymatic pathway, MoW-bN-Pc had the lowest limiting potential (− 0.32 V) than other systems, indicating its higher NRR activity. The synergistic orbital coupling between Mo(4d) and W(5d) due to their intimate proximity significantly raised the energy of the highest occupied molecular orbital of Mo to facilitate the electron donation to the antibonding orbital of N<sub>2</sub>, endowing the NRR of MoW-bN-Pc as compared to other systems. This work is sure to create interest for future studies on the construction of DAC-based active sites using molecular models.</p></div>\",\"PeriodicalId\":535,\"journal\":{\"name\":\"Electrocatalysis\",\"volume\":\"15 1\",\"pages\":\"87 - 95\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrocatalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12678-023-00855-6\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-023-00855-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Dual-Atomic Porphyry Molecular Systems as Efficient Electrocatalysts for N2 Reduction Reaction: a Theoretical Investigation
Metallo-porphyry-based frameworks have been utilized to construct single-atom catalysts (SACs), but their use in the fabrication of dual-atom catalysts (DACs) for the nitrogen reduction reaction (NRR) electrocatalytically is limited. Herein, a binuclear phthalocyanine (bN-Pc) was assessed based on a theoretical model to construct dual-atom systems (MoMo-bN-Pc, WW-bN-Pc, and MoW-bN-Pc) along with NRR activity and respective mechanisms, exploiting density functional theory (DFT) calculations. A cis-bridged N2-adduct, with N-atoms coordinating on both sides, resulted in these dual-atom systems, keeping adjacent metals in close proximity. Gibbs free energy studies revealed that the potential-determining step (PDS) for these catalysts appeared to be the protonation of adsorbed N2 on dual-atom sites (*N2H). Following the enzymatic pathway, MoW-bN-Pc had the lowest limiting potential (− 0.32 V) than other systems, indicating its higher NRR activity. The synergistic orbital coupling between Mo(4d) and W(5d) due to their intimate proximity significantly raised the energy of the highest occupied molecular orbital of Mo to facilitate the electron donation to the antibonding orbital of N2, endowing the NRR of MoW-bN-Pc as compared to other systems. This work is sure to create interest for future studies on the construction of DAC-based active sites using molecular models.
期刊介绍:
Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies.
Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.