基于fpga的数字化仪10gs /s实时波形匹配的设计、校准和评估

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Jens Trautmann, Paul Krüger, Andreas Becher, Stefan Wildermann, Jürgen Teich
{"title":"基于fpga的数字化仪10gs /s实时波形匹配的设计、校准和评估","authors":"Jens Trautmann, Paul Krüger, Andreas Becher, Stefan Wildermann, Jürgen Teich","doi":"10.1145/3635719","DOIUrl":null,"url":null,"abstract":"<p>Digitizing side-channel signals at high sampling rates produces huge amounts of data, while side-channel analysis techniques only need those specific trace segments containing Cryptographic Operations (COs). For detecting these segments, waveform-matching techniques have been established comparing the signal with a template of the CO’s characteristic pattern. Real-time waveform matching requires highly parallel implementations as achieved by hardware design but also reconfigurability as provided by FPGAs to adapt the matching hardware to a specific CO pattern. However, currently proposed designs process the samples from analog-to-digital converters sequentially and can only process low sampling rates due to the limited clock speed of FPGAs. </p><p>In this paper, we present a parallel waveform-matching architecture capable of performing high-speed waveform matching on a high-end FPGA-based digitizer. We also present a workflow for calibrating the waveform-matching system to the specific pattern of the CO in the presence of hardware restrictions provided by the FPGA hardware. Our implementation enables waveform matching at 10 GS/s, offering a speedup of 50x compared to the fastest state-of-the-art implementation known to us. We demonstrate how to apply the technique for attacking the widespread XTS-AES algorithm using waveform matching to recover the encrypted tweak even in the presence of so-called systemic noise.</p>","PeriodicalId":49248,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, Calibration, and Evaluation of Real-Time Waveform Matching on an FPGA-based Digitizer at 10 GS/s\",\"authors\":\"Jens Trautmann, Paul Krüger, Andreas Becher, Stefan Wildermann, Jürgen Teich\",\"doi\":\"10.1145/3635719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Digitizing side-channel signals at high sampling rates produces huge amounts of data, while side-channel analysis techniques only need those specific trace segments containing Cryptographic Operations (COs). For detecting these segments, waveform-matching techniques have been established comparing the signal with a template of the CO’s characteristic pattern. Real-time waveform matching requires highly parallel implementations as achieved by hardware design but also reconfigurability as provided by FPGAs to adapt the matching hardware to a specific CO pattern. However, currently proposed designs process the samples from analog-to-digital converters sequentially and can only process low sampling rates due to the limited clock speed of FPGAs. </p><p>In this paper, we present a parallel waveform-matching architecture capable of performing high-speed waveform matching on a high-end FPGA-based digitizer. We also present a workflow for calibrating the waveform-matching system to the specific pattern of the CO in the presence of hardware restrictions provided by the FPGA hardware. Our implementation enables waveform matching at 10 GS/s, offering a speedup of 50x compared to the fastest state-of-the-art implementation known to us. We demonstrate how to apply the technique for attacking the widespread XTS-AES algorithm using waveform matching to recover the encrypted tweak even in the presence of so-called systemic noise.</p>\",\"PeriodicalId\":49248,\"journal\":{\"name\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3635719\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3635719","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

在高采样率下数字化侧信道信号会产生大量的数据,而侧信道分析技术只需要那些包含密码操作(COs)的特定跟踪段。为了检测这些片段,波形匹配技术已经建立,将信号与CO的特征模式模板进行比较。实时波形匹配需要硬件设计实现的高度并行实现,还需要fpga提供的可重构性,以使匹配硬件适应特定的CO模式。然而,目前提出的设计顺序处理模数转换器的采样,由于fpga的时钟速度有限,只能处理低采样率。在本文中,我们提出了一种能够在高端fpga数字化仪上执行高速波形匹配的并行波形匹配架构。我们还提出了一个工作流,用于在FPGA硬件提供的硬件限制的情况下将波形匹配系统校准到CO的特定模式。我们的实现实现了10 GS/s的波形匹配,与我们已知的最快的最先进的实现相比,提供了50倍的加速。我们演示了如何应用该技术来攻击广泛使用的XTS-AES算法,使用波形匹配来恢复加密调整,即使在存在所谓的系统噪声的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design, Calibration, and Evaluation of Real-Time Waveform Matching on an FPGA-based Digitizer at 10 GS/s

Digitizing side-channel signals at high sampling rates produces huge amounts of data, while side-channel analysis techniques only need those specific trace segments containing Cryptographic Operations (COs). For detecting these segments, waveform-matching techniques have been established comparing the signal with a template of the CO’s characteristic pattern. Real-time waveform matching requires highly parallel implementations as achieved by hardware design but also reconfigurability as provided by FPGAs to adapt the matching hardware to a specific CO pattern. However, currently proposed designs process the samples from analog-to-digital converters sequentially and can only process low sampling rates due to the limited clock speed of FPGAs.

In this paper, we present a parallel waveform-matching architecture capable of performing high-speed waveform matching on a high-end FPGA-based digitizer. We also present a workflow for calibrating the waveform-matching system to the specific pattern of the CO in the presence of hardware restrictions provided by the FPGA hardware. Our implementation enables waveform matching at 10 GS/s, offering a speedup of 50x compared to the fastest state-of-the-art implementation known to us. We demonstrate how to apply the technique for attacking the widespread XTS-AES algorithm using waveform matching to recover the encrypted tweak even in the presence of so-called systemic noise.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Reconfigurable Technology and Systems
ACM Transactions on Reconfigurable Technology and Systems COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.90
自引率
8.70%
发文量
79
审稿时长
>12 weeks
期刊介绍: TRETS is the top journal focusing on research in, on, and with reconfigurable systems and on their underlying technology. The scope, rationale, and coverage by other journals are often limited to particular aspects of reconfigurable technology or reconfigurable systems. TRETS is a journal that covers reconfigurability in its own right. Topics that would be appropriate for TRETS would include all levels of reconfigurable system abstractions and all aspects of reconfigurable technology including platforms, programming environments and application successes that support these systems for computing or other applications. -The board and systems architectures of a reconfigurable platform. -Programming environments of reconfigurable systems, especially those designed for use with reconfigurable systems that will lead to increased programmer productivity. -Languages and compilers for reconfigurable systems. -Logic synthesis and related tools, as they relate to reconfigurable systems. -Applications on which success can be demonstrated. The underlying technology from which reconfigurable systems are developed. (Currently this technology is that of FPGAs, but research on the nature and use of follow-on technologies is appropriate for TRETS.) In considering whether a paper is suitable for TRETS, the foremost question should be whether reconfigurability has been essential to success. Topics such as architecture, programming languages, compilers, and environments, logic synthesis, and high performance applications are all suitable if the context is appropriate. For example, an architecture for an embedded application that happens to use FPGAs is not necessarily suitable for TRETS, but an architecture using FPGAs for which the reconfigurability of the FPGAs is an inherent part of the specifications (perhaps due to a need for re-use on multiple applications) would be appropriate for TRETS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信