非线性矩阵方程的解和摄动估计 \(X-A^{*}e^{X}A=I\)

Chacha, Chacha S.
{"title":"非线性矩阵方程的解和摄动估计 \\(X-A^{*}e^{X}A=I\\)","authors":"Chacha, Chacha S.","doi":"10.1186/s42787-022-00152-z","DOIUrl":null,"url":null,"abstract":"This work incorporates an efficient inversion free iterative scheme into Newton’s method to solve Newton’s step regardless of the singularity of the Fr $${\\acute{\\text {e}}}$$ chet derivative. The proposed iterative scheme is constructed by extending the idea of the foundational form of the conjugate gradient method. Moreover, the resulting scheme is refined and employed to obtain a symmetric solution of the nonlinear matrix equation $$X-A^{*}e^{X}A=I.$$ Furthermore, explicit expressions for the perturbation and residual bound estimates of the approximate positive definite solution are derived. Finally, five numerical case studies provided confirm both the preciseness of theoretical results and the effectiveness of the propounded iterative method.","PeriodicalId":33345,"journal":{"name":"Journal of the Egyptian Mathematical Society","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On solution and perturbation estimates for the nonlinear matrix equation \\\\(X-A^{*}e^{X}A=I\\\\)\",\"authors\":\"Chacha, Chacha S.\",\"doi\":\"10.1186/s42787-022-00152-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work incorporates an efficient inversion free iterative scheme into Newton’s method to solve Newton’s step regardless of the singularity of the Fr $${\\\\acute{\\\\text {e}}}$$ chet derivative. The proposed iterative scheme is constructed by extending the idea of the foundational form of the conjugate gradient method. Moreover, the resulting scheme is refined and employed to obtain a symmetric solution of the nonlinear matrix equation $$X-A^{*}e^{X}A=I.$$ Furthermore, explicit expressions for the perturbation and residual bound estimates of the approximate positive definite solution are derived. Finally, five numerical case studies provided confirm both the preciseness of theoretical results and the effectiveness of the propounded iterative method.\",\"PeriodicalId\":33345,\"journal\":{\"name\":\"Journal of the Egyptian Mathematical Society\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Egyptian Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s42787-022-00152-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Egyptian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42787-022-00152-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文在牛顿法中引入了一种有效的无反演迭代方案,在不考虑Fr $${\acute{\text {e}}}$$切特导数奇异性的情况下求解牛顿阶跃。所提出的迭代格式是通过扩展共轭梯度法的基本形式的思想来构造的。进一步,对所得格式进行细化,得到非线性矩阵方程$$X-A^{*}e^{X}A=I.$$的对称解,并推导出近似正定解的摄动估计和残差界估计的显式表达式。最后,给出了5个数值算例,验证了理论结果的精确性和所提出迭代方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On solution and perturbation estimates for the nonlinear matrix equation \(X-A^{*}e^{X}A=I\)
This work incorporates an efficient inversion free iterative scheme into Newton’s method to solve Newton’s step regardless of the singularity of the Fr $${\acute{\text {e}}}$$ chet derivative. The proposed iterative scheme is constructed by extending the idea of the foundational form of the conjugate gradient method. Moreover, the resulting scheme is refined and employed to obtain a symmetric solution of the nonlinear matrix equation $$X-A^{*}e^{X}A=I.$$ Furthermore, explicit expressions for the perturbation and residual bound estimates of the approximate positive definite solution are derived. Finally, five numerical case studies provided confirm both the preciseness of theoretical results and the effectiveness of the propounded iterative method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
18
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信