复杂调性的数学基础

IF 0.5 2区 数学 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Jeffrey R. Boland, Lane P. Hughston
{"title":"复杂调性的数学基础","authors":"Jeffrey R. Boland, Lane P. Hughston","doi":"10.1080/17459737.2023.2228546","DOIUrl":null,"url":null,"abstract":"<p>Equal temperament, in which semitones are tuned in the irrational ratio of <span><noscript><img alt=\"\" src=\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0001.gif\"/></noscript><img alt=\"\" data-formula-source='{\"type\" : \"image\", \"src\" : \"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0001.gif\"}' src=\"//:0\"/><span></span></span><span><span style=\"color: inherit; display: none;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msup&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mrow&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;/mrow&gt;&lt;mn&gt;12&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 3.951em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 3.322em; height: 0px; font-size: 118%;\"><span style=\"position: absolute; clip: rect(1.292em, 1003.25em, 2.504em, -1000em); top: -2.359em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 1.989em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.186em, 1000.45em, 4.141em, -1000em); top: -3.997em; left: 0em;\"><span style=\"font-family: MathJax_Main;\">2</span><span style=\"display: inline-block; width: 0px; height: 3.997em;\"></span></span><span style=\"position: absolute; top: -4.39em; left: 0.5em;\"><span><span style=\"font-size: 70.7%; font-family: MathJax_Main;\">1</span><span><span style=\"font-size: 70.7%; font-family: MathJax_Main;\">/</span></span><span style=\"font-size: 70.7%; font-family: MathJax_Main;\">12</span></span><span style=\"display: inline-block; width: 0px; height: 3.997em;\"></span></span></span></span><span style=\"font-family: MathJax_Main; padding-left: 0.278em;\">:</span><span style=\"font-family: MathJax_Main; padding-left: 0.278em;\">1</span></span><span style=\"display: inline-block; width: 0px; height: 2.359em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.057em; border-left: 0px solid; width: 0px; height: 1.203em;\"></span></span></nobr><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mn>2</mn><mrow><mn>1</mn><mrow><mo>/</mo></mrow><mn>12</mn></mrow></msup><mo>:</mo><mn>1</mn></math></span></span><script type=\"math/mml\"><math><msup><mn>2</mn><mrow><mn>1</mn><mrow><mo>/</mo></mrow><mn>12</mn></mrow></msup><mo>:</mo><mn>1</mn></math></script></span>, is best seen as a serviceable compromise, sacrificing purity for flexibility. Just intonation, in which intervals are given by products of powers of 2, 3, and 5, is more natural, but of limited flexibility. We propose a new scheme in which ratios of Gaussian integers form the basis of an abstract tonal system. The tritone, so problematic in just temperament, given ambiguously by the ratios <span><noscript><img alt=\"\" src=\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0002.gif\"/></noscript><img alt=\"\" data-formula-source='{\"type\" : \"image\", \"src\" : \"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0002.gif\"}' src=\"//:0\"/><span></span></span><span><span style=\"color: inherit;\"><span><span><span style=\"vertical-align: 0.25em;\"><span><span>45</span></span><span style=\"margin-top: -0.9em;\"><span><span><span style=\"height: 1em; border-top: none; border-bottom: 1px solid; margin: 0.1em 0px;\"></span></span><span><span><span>32</span></span></span></span></span></span></span></span></span><span tabindex=\"0\"></span><script type=\"math/mml\"><math><mstyle displaystyle=\"false\" scriptlevel=\"0\"><mfrac><mn>45</mn><mn>32</mn></mfrac></mstyle></math></script></span>, <span><noscript><img alt=\"\" src=\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0003.gif\"/></noscript><img alt=\"\" data-formula-source='{\"type\" : \"image\", \"src\" : \"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0003.gif\"}' src=\"//:0\"/><span></span></span><span><math><mstyle displaystyle=\"false\" scriptlevel=\"0\"><mfrac><mn>64</mn><mn>45</mn></mfrac></mstyle></math></span>, <span><noscript><img alt=\"\" src=\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0004.gif\"/></noscript><img alt=\"\" data-formula-source='{\"type\" : \"image\", \"src\" : \"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0004.gif\"}' src=\"//:0\"/><span></span></span><span><math><mstyle displaystyle=\"false\" scriptlevel=\"0\"><mfrac><mn>36</mn><mn>25</mn></mfrac></mstyle></math></span>, <span><noscript><img alt=\"\" src=\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0005.gif\"/></noscript><img alt=\"\" data-formula-source='{\"type\" : \"image\", \"src\" : \"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0005.gif\"}' src=\"//:0\"/><span></span></span><span><math><mstyle displaystyle=\"false\" scriptlevel=\"0\"><mfrac><mn>25</mn><mn>18</mn></mfrac></mstyle></math></span>, none satisfactory, is in our scheme represented by the complex ratio <span><noscript><img alt=\"\" src=\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0006.gif\"/></noscript><img alt=\"\" data-formula-source='{\"type\" : \"image\", \"src\" : \"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0006.gif\"}' src=\"//:0\"/><span></span></span><span><math><mn>1</mn><mo>+</mo><mrow><mi mathvariant=\"normal\">i</mi></mrow><mo>:</mo><mn>1</mn></math></span>. The major and minor whole tones, given by intervals of <span><noscript><img alt=\"\" src=\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0007.gif\"/></noscript><img alt=\"\" data-formula-source='{\"type\" : \"image\", \"src\" : \"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0007.gif\"}' src=\"//:0\"/><span></span></span><span><math><mstyle displaystyle=\"false\" scriptlevel=\"0\"><mfrac><mn>9</mn><mn>8</mn></mfrac></mstyle></math></span> and <span><noscript><img alt=\"\" src=\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0008.gif\"/></noscript><img alt=\"\" data-formula-source='{\"type\" : \"image\", \"src\" : \"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0008.gif\"}' src=\"//:0\"/><span></span></span><span><math><mstyle displaystyle=\"false\" scriptlevel=\"0\"><mfrac><mn>10</mn><mn>9</mn></mfrac></mstyle></math></span>, can each be factorized into products of complex semitones, giving us a major complex semitone <span><noscript><img alt=\"\" src=\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0009.gif\"/></noscript><img alt=\"\" data-formula-source='{\"type\" : \"image\", \"src\" : \"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0009.gif\"}' src=\"//:0\"/><span></span></span><span><math><mstyle displaystyle=\"false\" scriptlevel=\"0\"><mfrac><mn>3</mn><mn>4</mn></mfrac></mstyle><mo>(</mo><mn>1</mn><mo>+</mo><mrow><mi mathvariant=\"normal\">i</mi></mrow><mo>)</mo></math></span> and a minor complex semitone <span><noscript><img alt=\"\" src=\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0010.gif\"/></noscript><img alt=\"\" data-formula-source='{\"type\" : \"image\", \"src\" : \"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0010.gif\"}' src=\"//:0\"/><span></span></span><span><math><mstyle displaystyle=\"false\" scriptlevel=\"0\"><mfrac><mn>1</mn><mn>3</mn></mfrac></mstyle><mo>(</mo><mn>3</mn><mo>+</mo><mrow><mi mathvariant=\"normal\">i</mi></mrow><mo>)</mo></math></span>. The perfect third, given by the interval <span><noscript><img alt=\"\" src=\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0011.gif\"/></noscript><img alt=\"\" data-formula-source='{\"type\" : \"image\", \"src\" : \"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0011.gif\"}' src=\"//:0\"/><span></span></span><span><math><mstyle displaystyle=\"false\" scriptlevel=\"0\"><mfrac><mn>5</mn><mn>4</mn></mfrac></mstyle></math></span>, factorizes into the product of a complex whole tone <span><noscript><img alt=\"\" src=\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0012.gif\"/></noscript><img alt=\"\" data-formula-source='{\"type\" : \"image\", \"src\" : \"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0012.gif\"}' src=\"//:0\"/><span></span></span><span><math><mstyle displaystyle=\"false\" scriptlevel=\"0\"><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle><mo>(</mo><mn>1</mn><mo>+</mo><mn>2</mn><mrow><mi mathvariant=\"normal\">i</mi></mrow><mo>)</mo></math></span> and its complex conjugate. Augmented with these supplementary tones, the resulting scheme of complex intervals based on products of low powers of Gaussian primes leads to the construction of a complete system of major and minor scales in all keys.</p>","PeriodicalId":50138,"journal":{"name":"Journal of Mathematics and Music","volume":"605 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical foundations of complex tonality\",\"authors\":\"Jeffrey R. Boland, Lane P. Hughston\",\"doi\":\"10.1080/17459737.2023.2228546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Equal temperament, in which semitones are tuned in the irrational ratio of <span><noscript><img alt=\\\"\\\" src=\\\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0001.gif\\\"/></noscript><img alt=\\\"\\\" data-formula-source='{\\\"type\\\" : \\\"image\\\", \\\"src\\\" : \\\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0001.gif\\\"}' src=\\\"//:0\\\"/><span></span></span><span><span style=\\\"color: inherit; display: none;\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;msup&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mrow&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;/mrow&gt;&lt;mn&gt;12&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"position: relative;\\\" tabindex=\\\"0\\\"><nobr aria-hidden=\\\"true\\\"><span style=\\\"width: 3.951em; display: inline-block;\\\"><span style=\\\"display: inline-block; position: relative; width: 3.322em; height: 0px; font-size: 118%;\\\"><span style=\\\"position: absolute; clip: rect(1.292em, 1003.25em, 2.504em, -1000em); top: -2.359em; left: 0em;\\\"><span><span><span style=\\\"display: inline-block; position: relative; width: 1.989em; height: 0px;\\\"><span style=\\\"position: absolute; clip: rect(3.186em, 1000.45em, 4.141em, -1000em); top: -3.997em; left: 0em;\\\"><span style=\\\"font-family: MathJax_Main;\\\">2</span><span style=\\\"display: inline-block; width: 0px; height: 3.997em;\\\"></span></span><span style=\\\"position: absolute; top: -4.39em; left: 0.5em;\\\"><span><span style=\\\"font-size: 70.7%; font-family: MathJax_Main;\\\">1</span><span><span style=\\\"font-size: 70.7%; font-family: MathJax_Main;\\\">/</span></span><span style=\\\"font-size: 70.7%; font-family: MathJax_Main;\\\">12</span></span><span style=\\\"display: inline-block; width: 0px; height: 3.997em;\\\"></span></span></span></span><span style=\\\"font-family: MathJax_Main; padding-left: 0.278em;\\\">:</span><span style=\\\"font-family: MathJax_Main; padding-left: 0.278em;\\\">1</span></span><span style=\\\"display: inline-block; width: 0px; height: 2.359em;\\\"></span></span></span><span style=\\\"display: inline-block; overflow: hidden; vertical-align: -0.057em; border-left: 0px solid; width: 0px; height: 1.203em;\\\"></span></span></nobr><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mn>2</mn><mrow><mn>1</mn><mrow><mo>/</mo></mrow><mn>12</mn></mrow></msup><mo>:</mo><mn>1</mn></math></span></span><script type=\\\"math/mml\\\"><math><msup><mn>2</mn><mrow><mn>1</mn><mrow><mo>/</mo></mrow><mn>12</mn></mrow></msup><mo>:</mo><mn>1</mn></math></script></span>, is best seen as a serviceable compromise, sacrificing purity for flexibility. Just intonation, in which intervals are given by products of powers of 2, 3, and 5, is more natural, but of limited flexibility. We propose a new scheme in which ratios of Gaussian integers form the basis of an abstract tonal system. The tritone, so problematic in just temperament, given ambiguously by the ratios <span><noscript><img alt=\\\"\\\" src=\\\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0002.gif\\\"/></noscript><img alt=\\\"\\\" data-formula-source='{\\\"type\\\" : \\\"image\\\", \\\"src\\\" : \\\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0002.gif\\\"}' src=\\\"//:0\\\"/><span></span></span><span><span style=\\\"color: inherit;\\\"><span><span><span style=\\\"vertical-align: 0.25em;\\\"><span><span>45</span></span><span style=\\\"margin-top: -0.9em;\\\"><span><span><span style=\\\"height: 1em; border-top: none; border-bottom: 1px solid; margin: 0.1em 0px;\\\"></span></span><span><span><span>32</span></span></span></span></span></span></span></span></span><span tabindex=\\\"0\\\"></span><script type=\\\"math/mml\\\"><math><mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"0\\\"><mfrac><mn>45</mn><mn>32</mn></mfrac></mstyle></math></script></span>, <span><noscript><img alt=\\\"\\\" src=\\\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0003.gif\\\"/></noscript><img alt=\\\"\\\" data-formula-source='{\\\"type\\\" : \\\"image\\\", \\\"src\\\" : \\\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0003.gif\\\"}' src=\\\"//:0\\\"/><span></span></span><span><math><mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"0\\\"><mfrac><mn>64</mn><mn>45</mn></mfrac></mstyle></math></span>, <span><noscript><img alt=\\\"\\\" src=\\\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0004.gif\\\"/></noscript><img alt=\\\"\\\" data-formula-source='{\\\"type\\\" : \\\"image\\\", \\\"src\\\" : \\\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0004.gif\\\"}' src=\\\"//:0\\\"/><span></span></span><span><math><mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"0\\\"><mfrac><mn>36</mn><mn>25</mn></mfrac></mstyle></math></span>, <span><noscript><img alt=\\\"\\\" src=\\\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0005.gif\\\"/></noscript><img alt=\\\"\\\" data-formula-source='{\\\"type\\\" : \\\"image\\\", \\\"src\\\" : \\\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0005.gif\\\"}' src=\\\"//:0\\\"/><span></span></span><span><math><mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"0\\\"><mfrac><mn>25</mn><mn>18</mn></mfrac></mstyle></math></span>, none satisfactory, is in our scheme represented by the complex ratio <span><noscript><img alt=\\\"\\\" src=\\\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0006.gif\\\"/></noscript><img alt=\\\"\\\" data-formula-source='{\\\"type\\\" : \\\"image\\\", \\\"src\\\" : \\\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0006.gif\\\"}' src=\\\"//:0\\\"/><span></span></span><span><math><mn>1</mn><mo>+</mo><mrow><mi mathvariant=\\\"normal\\\">i</mi></mrow><mo>:</mo><mn>1</mn></math></span>. The major and minor whole tones, given by intervals of <span><noscript><img alt=\\\"\\\" src=\\\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0007.gif\\\"/></noscript><img alt=\\\"\\\" data-formula-source='{\\\"type\\\" : \\\"image\\\", \\\"src\\\" : \\\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0007.gif\\\"}' src=\\\"//:0\\\"/><span></span></span><span><math><mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"0\\\"><mfrac><mn>9</mn><mn>8</mn></mfrac></mstyle></math></span> and <span><noscript><img alt=\\\"\\\" src=\\\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0008.gif\\\"/></noscript><img alt=\\\"\\\" data-formula-source='{\\\"type\\\" : \\\"image\\\", \\\"src\\\" : \\\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0008.gif\\\"}' src=\\\"//:0\\\"/><span></span></span><span><math><mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"0\\\"><mfrac><mn>10</mn><mn>9</mn></mfrac></mstyle></math></span>, can each be factorized into products of complex semitones, giving us a major complex semitone <span><noscript><img alt=\\\"\\\" src=\\\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0009.gif\\\"/></noscript><img alt=\\\"\\\" data-formula-source='{\\\"type\\\" : \\\"image\\\", \\\"src\\\" : \\\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0009.gif\\\"}' src=\\\"//:0\\\"/><span></span></span><span><math><mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"0\\\"><mfrac><mn>3</mn><mn>4</mn></mfrac></mstyle><mo>(</mo><mn>1</mn><mo>+</mo><mrow><mi mathvariant=\\\"normal\\\">i</mi></mrow><mo>)</mo></math></span> and a minor complex semitone <span><noscript><img alt=\\\"\\\" src=\\\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0010.gif\\\"/></noscript><img alt=\\\"\\\" data-formula-source='{\\\"type\\\" : \\\"image\\\", \\\"src\\\" : \\\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0010.gif\\\"}' src=\\\"//:0\\\"/><span></span></span><span><math><mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"0\\\"><mfrac><mn>1</mn><mn>3</mn></mfrac></mstyle><mo>(</mo><mn>3</mn><mo>+</mo><mrow><mi mathvariant=\\\"normal\\\">i</mi></mrow><mo>)</mo></math></span>. The perfect third, given by the interval <span><noscript><img alt=\\\"\\\" src=\\\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0011.gif\\\"/></noscript><img alt=\\\"\\\" data-formula-source='{\\\"type\\\" : \\\"image\\\", \\\"src\\\" : \\\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0011.gif\\\"}' src=\\\"//:0\\\"/><span></span></span><span><math><mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"0\\\"><mfrac><mn>5</mn><mn>4</mn></mfrac></mstyle></math></span>, factorizes into the product of a complex whole tone <span><noscript><img alt=\\\"\\\" src=\\\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0012.gif\\\"/></noscript><img alt=\\\"\\\" data-formula-source='{\\\"type\\\" : \\\"image\\\", \\\"src\\\" : \\\"/na101/home/literatum/publisher/tandf/journals/content/tmam20/0/tmam20.ahead-of-print/17459737.2023.2228546/20230717/images/tmam_a_2228546_ilm0012.gif\\\"}' src=\\\"//:0\\\"/><span></span></span><span><math><mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"0\\\"><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle><mo>(</mo><mn>1</mn><mo>+</mo><mn>2</mn><mrow><mi mathvariant=\\\"normal\\\">i</mi></mrow><mo>)</mo></math></span> and its complex conjugate. Augmented with these supplementary tones, the resulting scheme of complex intervals based on products of low powers of Gaussian primes leads to the construction of a complete system of major and minor scales in all keys.</p>\",\"PeriodicalId\":50138,\"journal\":{\"name\":\"Journal of Mathematics and Music\",\"volume\":\"605 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics and Music\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17459737.2023.2228546\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Music","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17459737.2023.2228546","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

均衡音律,即半音按21/ 12:21 1/ 12:21 1/ 12:21 1/ 12:21 1的不合理比例调音,最好被视为一种可行的折衷,牺牲纯洁性换取灵活性。音程由2、3和5的幂之积给出的纯语调更为自然,但灵活性有限。我们提出了一种新的方案,其中高斯整数的比率构成抽象音调系统的基础。在我们的方案中,用复比1+i:1表示的三全音,在气质上是如此有问题,由比例45324532,6445,3625,2518模糊地给出,不令人满意。由音程98和109给出的大调和小调全音,都可以分解成复半音的乘积,得到一个大调复半音34(1+i)和一个小调复半音13(3+i)。由音程54给出的完美三度音被分解成一个复杂的全音12(1+2i)和它的复杂共轭音的乘积。在这些补充音的基础上,基于高斯素数的低次幂乘积的复杂音程方案导致了所有键的大调和小调音阶的完整系统的构建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical foundations of complex tonality

Equal temperament, in which semitones are tuned in the irrational ratio of 21/12:1, is best seen as a serviceable compromise, sacrificing purity for flexibility. Just intonation, in which intervals are given by products of powers of 2, 3, and 5, is more natural, but of limited flexibility. We propose a new scheme in which ratios of Gaussian integers form the basis of an abstract tonal system. The tritone, so problematic in just temperament, given ambiguously by the ratios 4532, 6445, 3625, 2518, none satisfactory, is in our scheme represented by the complex ratio 1+i:1. The major and minor whole tones, given by intervals of 98 and 109, can each be factorized into products of complex semitones, giving us a major complex semitone 34(1+i) and a minor complex semitone 13(3+i). The perfect third, given by the interval 54, factorizes into the product of a complex whole tone 12(1+2i) and its complex conjugate. Augmented with these supplementary tones, the resulting scheme of complex intervals based on products of low powers of Gaussian primes leads to the construction of a complete system of major and minor scales in all keys.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematics and Music
Journal of Mathematics and Music 数学-数学跨学科应用
CiteScore
1.90
自引率
18.20%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematics and Music aims to advance the use of mathematical modelling and computation in music theory. The Journal focuses on mathematical approaches to musical structures and processes, including mathematical investigations into music-theoretic or compositional issues as well as mathematically motivated analyses of musical works or performances. In consideration of the deep unsolved ontological and epistemological questions concerning knowledge about music, the Journal is open to a broad array of methodologies and topics, particularly those outside of established research fields such as acoustics, sound engineering, auditory perception, linguistics etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信