{"title":"通过环境转换抑制抗生素耐药性的进化","authors":"Bryce Morsky, Dervis Can Vural","doi":"10.1007/s12080-022-00530-4","DOIUrl":null,"url":null,"abstract":"<p>Ecology and evolution under changing environments are important in many subfields of biology with implications for medicine. Here, we explore an example: the consequences of fluctuating environments on the emergence of antibiotic resistance, which is an immense and growing problem. Typically, high doses of antibiotics are employed to eliminate the infection quickly and minimize the time under which resistance may emerge. However, this strategy may not be optimal. Since competition can reduce fitness and resistance typically has a reproductive cost, resistant mutants’ fitness can depend on their environment. Here we show conditions under which environmental varying fitness can be exploited to prevent the emergence of resistance. We develop a stochastic Lotka-Volterra model of a microbial system with competing phenotypes: a wild strain susceptible to the antibiotic, and a mutant strain that is resistant. We investigate the impact of various pulsed applications of antibiotics on population suppression. Leveraging competition, we show how a strategy of environmental switching can suppress the infection while avoiding resistant mutants. We discuss limitations of the procedure depending on the microbe and pharmacodynamics and methods to ameliorate them.</p>","PeriodicalId":51198,"journal":{"name":"Theoretical Ecology","volume":"69 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Suppressing evolution of antibiotic resistance through environmental switching\",\"authors\":\"Bryce Morsky, Dervis Can Vural\",\"doi\":\"10.1007/s12080-022-00530-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ecology and evolution under changing environments are important in many subfields of biology with implications for medicine. Here, we explore an example: the consequences of fluctuating environments on the emergence of antibiotic resistance, which is an immense and growing problem. Typically, high doses of antibiotics are employed to eliminate the infection quickly and minimize the time under which resistance may emerge. However, this strategy may not be optimal. Since competition can reduce fitness and resistance typically has a reproductive cost, resistant mutants’ fitness can depend on their environment. Here we show conditions under which environmental varying fitness can be exploited to prevent the emergence of resistance. We develop a stochastic Lotka-Volterra model of a microbial system with competing phenotypes: a wild strain susceptible to the antibiotic, and a mutant strain that is resistant. We investigate the impact of various pulsed applications of antibiotics on population suppression. Leveraging competition, we show how a strategy of environmental switching can suppress the infection while avoiding resistant mutants. We discuss limitations of the procedure depending on the microbe and pharmacodynamics and methods to ameliorate them.</p>\",\"PeriodicalId\":51198,\"journal\":{\"name\":\"Theoretical Ecology\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s12080-022-00530-4\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s12080-022-00530-4","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
Suppressing evolution of antibiotic resistance through environmental switching
Ecology and evolution under changing environments are important in many subfields of biology with implications for medicine. Here, we explore an example: the consequences of fluctuating environments on the emergence of antibiotic resistance, which is an immense and growing problem. Typically, high doses of antibiotics are employed to eliminate the infection quickly and minimize the time under which resistance may emerge. However, this strategy may not be optimal. Since competition can reduce fitness and resistance typically has a reproductive cost, resistant mutants’ fitness can depend on their environment. Here we show conditions under which environmental varying fitness can be exploited to prevent the emergence of resistance. We develop a stochastic Lotka-Volterra model of a microbial system with competing phenotypes: a wild strain susceptible to the antibiotic, and a mutant strain that is resistant. We investigate the impact of various pulsed applications of antibiotics on population suppression. Leveraging competition, we show how a strategy of environmental switching can suppress the infection while avoiding resistant mutants. We discuss limitations of the procedure depending on the microbe and pharmacodynamics and methods to ameliorate them.
期刊介绍:
Theoretical Ecology publishes innovative research in theoretical ecology, broadly defined. Papers should use theoretical approaches to answer questions of ecological interest and appeal to and be readable by a broad audience of ecologists. Work that uses mathematical, statistical, computational, or conceptual approaches is all welcomed, provided that the goal is to increase ecological understanding. Papers that only use existing approaches to analyze data, or are only mathematical analyses that do not further ecological understanding, are not appropriate. Work that bridges disciplinary boundaries, such as the intersection between quantitative social sciences and ecology, or physical influences on ecological processes, will also be particularly welcome.
All areas of theoretical ecology, including ecophysiology, population ecology, behavioral ecology, evolutionary ecology, ecosystem ecology, community ecology, and ecosystem and landscape ecology are all appropriate. Theoretical papers that focus on applied ecological questions are also of particular interest.