{"title":"极值的Mallows距离收敛:再生方法","authors":"S. Mousavinasr, C. R. Gonçalves, C. C. Y. Dorea","doi":"10.1137/s0040585x97t991076","DOIUrl":null,"url":null,"abstract":"Theory of Probability &Its Applications, Volume 67, Issue 3, Page 478-484, November 2022. <br/> We explore the Mallows distance convergence to characterize the domain of attraction for extreme value distributions. Under mild assumptions we derive the necessary and sufficient conditions. In addition to the i.i.d. case, our results apply to regenerative processes.","PeriodicalId":51193,"journal":{"name":"Theory of Probability and its Applications","volume":"45 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mallows Distance Convergence for Extremes: Regeneration Approach\",\"authors\":\"S. Mousavinasr, C. R. Gonçalves, C. C. Y. Dorea\",\"doi\":\"10.1137/s0040585x97t991076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Theory of Probability &Its Applications, Volume 67, Issue 3, Page 478-484, November 2022. <br/> We explore the Mallows distance convergence to characterize the domain of attraction for extreme value distributions. Under mild assumptions we derive the necessary and sufficient conditions. In addition to the i.i.d. case, our results apply to regenerative processes.\",\"PeriodicalId\":51193,\"journal\":{\"name\":\"Theory of Probability and its Applications\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/s0040585x97t991076\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and its Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/s0040585x97t991076","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Mallows Distance Convergence for Extremes: Regeneration Approach
Theory of Probability &Its Applications, Volume 67, Issue 3, Page 478-484, November 2022. We explore the Mallows distance convergence to characterize the domain of attraction for extreme value distributions. Under mild assumptions we derive the necessary and sufficient conditions. In addition to the i.i.d. case, our results apply to regenerative processes.
期刊介绍:
Theory of Probability and Its Applications (TVP) accepts original articles and communications on the theory of probability, general problems of mathematical statistics, and applications of the theory of probability to natural science and technology. Articles of the latter type will be accepted only if the mathematical methods applied are essentially new.