{"title":"Hilbert空间中加权相关随机向量的广义Marcinkiewicz定律","authors":"T. C. Son, L. V. Dung, D. T. Dat, T. T. Trang","doi":"10.1137/s0040585x97t991039","DOIUrl":null,"url":null,"abstract":"Theory of Probability &Its Applications, Volume 67, Issue 3, Page 434-451, November 2022. <br/> The aim of this paper is to apply the theory of regularly varying functions for studying Marcinkiewicz weak and strong laws of large numbers for the weighted sum $S_n=\\sum_{j=1}^{m_n}c_{nj}X_j$, where $(X_n;\\, n\\geq 1)$ is a sequence of dependent random vectors in Hilbert spaces, and $(c_{nj})$ is an array of real numbers. Moreover, these results are applied to obtain some results on the convergence of multivariate Pareto--Zipf distributions and multivariate log-gamma distributions.","PeriodicalId":51193,"journal":{"name":"Theory of Probability and its Applications","volume":"24 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Marcinkiewicz Laws for Weighted Dependent Random Vectors in Hilbert Spaces\",\"authors\":\"T. C. Son, L. V. Dung, D. T. Dat, T. T. Trang\",\"doi\":\"10.1137/s0040585x97t991039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Theory of Probability &Its Applications, Volume 67, Issue 3, Page 434-451, November 2022. <br/> The aim of this paper is to apply the theory of regularly varying functions for studying Marcinkiewicz weak and strong laws of large numbers for the weighted sum $S_n=\\\\sum_{j=1}^{m_n}c_{nj}X_j$, where $(X_n;\\\\, n\\\\geq 1)$ is a sequence of dependent random vectors in Hilbert spaces, and $(c_{nj})$ is an array of real numbers. Moreover, these results are applied to obtain some results on the convergence of multivariate Pareto--Zipf distributions and multivariate log-gamma distributions.\",\"PeriodicalId\":51193,\"journal\":{\"name\":\"Theory of Probability and its Applications\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/s0040585x97t991039\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and its Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/s0040585x97t991039","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Generalized Marcinkiewicz Laws for Weighted Dependent Random Vectors in Hilbert Spaces
Theory of Probability &Its Applications, Volume 67, Issue 3, Page 434-451, November 2022. The aim of this paper is to apply the theory of regularly varying functions for studying Marcinkiewicz weak and strong laws of large numbers for the weighted sum $S_n=\sum_{j=1}^{m_n}c_{nj}X_j$, where $(X_n;\, n\geq 1)$ is a sequence of dependent random vectors in Hilbert spaces, and $(c_{nj})$ is an array of real numbers. Moreover, these results are applied to obtain some results on the convergence of multivariate Pareto--Zipf distributions and multivariate log-gamma distributions.
期刊介绍:
Theory of Probability and Its Applications (TVP) accepts original articles and communications on the theory of probability, general problems of mathematical statistics, and applications of the theory of probability to natural science and technology. Articles of the latter type will be accepted only if the mathematical methods applied are essentially new.