{"title":"具有非局部扩散的槲寄生与鸟类共生模式的繁殖动力学","authors":"Juan He, Guo-Bao Zhang, Ting Liu","doi":"10.1017/s0956792523000311","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the study of the propagation dynamics of a mutualistic model of mistletoes and birds with nonlocal dispersal. By applying the theory of asymptotic speeds of spread and travelling waves for monotone semiflows, we establish the existence of the asymptotic spreading speed <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0956792523000311_inline1.png\" /> <jats:tex-math> $c^*$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the existence of travelling wavefronts with the wave speed <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0956792523000311_inline2.png\" /> <jats:tex-math> $c\\ge c^*$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and the nonexistence of travelling wavefronts with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0956792523000311_inline3.png\" /> <jats:tex-math> $c\\lt c^*$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. It turns out that the spreading speed coincides with the minimal wave speed of travelling wavefronts. Moreover, some lower and upper bound estimates of the spreading speed <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0956792523000311_inline4.png\" /> <jats:tex-math> $c^*$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are provided.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":"35 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Propagation dynamics of a mutualistic model of mistletoes and birds with nonlocal dispersal\",\"authors\":\"Juan He, Guo-Bao Zhang, Ting Liu\",\"doi\":\"10.1017/s0956792523000311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to the study of the propagation dynamics of a mutualistic model of mistletoes and birds with nonlocal dispersal. By applying the theory of asymptotic speeds of spread and travelling waves for monotone semiflows, we establish the existence of the asymptotic spreading speed <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0956792523000311_inline1.png\\\" /> <jats:tex-math> $c^*$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the existence of travelling wavefronts with the wave speed <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0956792523000311_inline2.png\\\" /> <jats:tex-math> $c\\\\ge c^*$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and the nonexistence of travelling wavefronts with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0956792523000311_inline3.png\\\" /> <jats:tex-math> $c\\\\lt c^*$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. It turns out that the spreading speed coincides with the minimal wave speed of travelling wavefronts. Moreover, some lower and upper bound estimates of the spreading speed <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0956792523000311_inline4.png\\\" /> <jats:tex-math> $c^*$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are provided.\",\"PeriodicalId\":51046,\"journal\":{\"name\":\"European Journal of Applied Mathematics\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0956792523000311\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0956792523000311","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Propagation dynamics of a mutualistic model of mistletoes and birds with nonlocal dispersal
This paper is devoted to the study of the propagation dynamics of a mutualistic model of mistletoes and birds with nonlocal dispersal. By applying the theory of asymptotic speeds of spread and travelling waves for monotone semiflows, we establish the existence of the asymptotic spreading speed $c^*$ , the existence of travelling wavefronts with the wave speed $c\ge c^*$ and the nonexistence of travelling wavefronts with $c\lt c^*$ . It turns out that the spreading speed coincides with the minimal wave speed of travelling wavefronts. Moreover, some lower and upper bound estimates of the spreading speed $c^*$ are provided.
期刊介绍:
Since 2008 EJAM surveys have been expanded to cover Applied and Industrial Mathematics. Coverage of the journal has been strengthened in probabilistic applications, while still focusing on those areas of applied mathematics inspired by real-world applications, and at the same time fostering the development of theoretical methods with a broad range of applicability. Survey papers contain reviews of emerging areas of mathematics, either in core areas or with relevance to users in industry and other disciplines. Research papers may be in any area of applied mathematics, with special emphasis on new mathematical ideas, relevant to modelling and analysis in modern science and technology, and the development of interesting mathematical methods of wide applicability.