具有非局部扩散的槲寄生与鸟类共生模式的繁殖动力学

IF 2.3 4区 数学 Q1 MATHEMATICS, APPLIED
Juan He, Guo-Bao Zhang, Ting Liu
{"title":"具有非局部扩散的槲寄生与鸟类共生模式的繁殖动力学","authors":"Juan He, Guo-Bao Zhang, Ting Liu","doi":"10.1017/s0956792523000311","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the study of the propagation dynamics of a mutualistic model of mistletoes and birds with nonlocal dispersal. By applying the theory of asymptotic speeds of spread and travelling waves for monotone semiflows, we establish the existence of the asymptotic spreading speed <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0956792523000311_inline1.png\" /> <jats:tex-math> $c^*$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the existence of travelling wavefronts with the wave speed <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0956792523000311_inline2.png\" /> <jats:tex-math> $c\\ge c^*$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and the nonexistence of travelling wavefronts with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0956792523000311_inline3.png\" /> <jats:tex-math> $c\\lt c^*$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. It turns out that the spreading speed coincides with the minimal wave speed of travelling wavefronts. Moreover, some lower and upper bound estimates of the spreading speed <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0956792523000311_inline4.png\" /> <jats:tex-math> $c^*$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are provided.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":"35 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Propagation dynamics of a mutualistic model of mistletoes and birds with nonlocal dispersal\",\"authors\":\"Juan He, Guo-Bao Zhang, Ting Liu\",\"doi\":\"10.1017/s0956792523000311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to the study of the propagation dynamics of a mutualistic model of mistletoes and birds with nonlocal dispersal. By applying the theory of asymptotic speeds of spread and travelling waves for monotone semiflows, we establish the existence of the asymptotic spreading speed <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0956792523000311_inline1.png\\\" /> <jats:tex-math> $c^*$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the existence of travelling wavefronts with the wave speed <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0956792523000311_inline2.png\\\" /> <jats:tex-math> $c\\\\ge c^*$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and the nonexistence of travelling wavefronts with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0956792523000311_inline3.png\\\" /> <jats:tex-math> $c\\\\lt c^*$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. It turns out that the spreading speed coincides with the minimal wave speed of travelling wavefronts. Moreover, some lower and upper bound estimates of the spreading speed <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0956792523000311_inline4.png\\\" /> <jats:tex-math> $c^*$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are provided.\",\"PeriodicalId\":51046,\"journal\":{\"name\":\"European Journal of Applied Mathematics\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0956792523000311\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0956792523000311","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有非局部扩散的槲寄生与鸟类共生模式的繁殖动力学。利用单调半流的传播波和行波的渐近速度理论,证明了其渐近传播速度$c^*$的存在性,波速$c\ \ c^*$的行波前的存在性和行波前$c\lt c^*$的不存在性。结果表明,传播速度与行波前的最小波速一致。此外,给出了扩展速度$c^*$的下界和上界估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Propagation dynamics of a mutualistic model of mistletoes and birds with nonlocal dispersal
This paper is devoted to the study of the propagation dynamics of a mutualistic model of mistletoes and birds with nonlocal dispersal. By applying the theory of asymptotic speeds of spread and travelling waves for monotone semiflows, we establish the existence of the asymptotic spreading speed $c^*$ , the existence of travelling wavefronts with the wave speed $c\ge c^*$ and the nonexistence of travelling wavefronts with $c\lt c^*$ . It turns out that the spreading speed coincides with the minimal wave speed of travelling wavefronts. Moreover, some lower and upper bound estimates of the spreading speed $c^*$ are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Since 2008 EJAM surveys have been expanded to cover Applied and Industrial Mathematics. Coverage of the journal has been strengthened in probabilistic applications, while still focusing on those areas of applied mathematics inspired by real-world applications, and at the same time fostering the development of theoretical methods with a broad range of applicability. Survey papers contain reviews of emerging areas of mathematics, either in core areas or with relevance to users in industry and other disciplines. Research papers may be in any area of applied mathematics, with special emphasis on new mathematical ideas, relevant to modelling and analysis in modern science and technology, and the development of interesting mathematical methods of wide applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信