基于ris的星-航-地综合中继网络的能效性能与深度强化学习

IF 1.9 4区 工程技术 Q2 Engineering
Jiao Li, Huajian Xue, Min Wu, Fucheng Wang, Tieliang Gao, Feng Zhou
{"title":"基于ris的星-航-地综合中继网络的能效性能与深度强化学习","authors":"Jiao Li, Huajian Xue, Min Wu, Fucheng Wang, Tieliang Gao, Feng Zhou","doi":"10.1186/s13634-023-01070-7","DOIUrl":null,"url":null,"abstract":"<p>Integrated satellite–aerial–terrestrial relay networks (ISATRNs) play a vital role in next-gen networks, particularly those with high-altitude platforms (HAP). This study introduces a new model for hybrid optical/RF-based HAP-enabled ISATRNs, incorporating reconfigurable intelligent surfaces (RIS) on unmanned aerial vehicles (UAVs) to optimize access in dense urban areas. Non-orthogonal multiple access is employed for improved spectrum efficiency. The objective is to jointly optimize UAV trajectory, RIS phase shift, and active transmit beamforming while considering energy consumption. A deep reinforcement learning approach using LSTM-DDQN framework is proposed. Numerical results show the effectiveness of our algorithm over traditional DDQN, with higher single-step exploration reward and evaluation metrics.</p>","PeriodicalId":11816,"journal":{"name":"EURASIP Journal on Advances in Signal Processing","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy efficiency performance in RIS-based integrated satellite–aerial–terrestrial relay networks with deep reinforcement learning\",\"authors\":\"Jiao Li, Huajian Xue, Min Wu, Fucheng Wang, Tieliang Gao, Feng Zhou\",\"doi\":\"10.1186/s13634-023-01070-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Integrated satellite–aerial–terrestrial relay networks (ISATRNs) play a vital role in next-gen networks, particularly those with high-altitude platforms (HAP). This study introduces a new model for hybrid optical/RF-based HAP-enabled ISATRNs, incorporating reconfigurable intelligent surfaces (RIS) on unmanned aerial vehicles (UAVs) to optimize access in dense urban areas. Non-orthogonal multiple access is employed for improved spectrum efficiency. The objective is to jointly optimize UAV trajectory, RIS phase shift, and active transmit beamforming while considering energy consumption. A deep reinforcement learning approach using LSTM-DDQN framework is proposed. Numerical results show the effectiveness of our algorithm over traditional DDQN, with higher single-step exploration reward and evaluation metrics.</p>\",\"PeriodicalId\":11816,\"journal\":{\"name\":\"EURASIP Journal on Advances in Signal Processing\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Advances in Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s13634-023-01070-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Advances in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13634-023-01070-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

综合星-空-地中继网络(ISATRNs)在下一代网络中发挥着至关重要的作用,特别是那些具有高空平台(HAP)的网络。该研究介绍了一种基于混合光学/射频的HAP-enabled ISATRNs的新模型,将可重构智能表面(RIS)集成到无人机(uav)上,以优化密集城市地区的访问。采用非正交多址,提高了频谱效率。目标是在考虑能耗的情况下,联合优化无人机轨迹、RIS相移和主动发射波束形成。提出了一种基于LSTM-DDQN框架的深度强化学习方法。数值结果表明,该算法优于传统的DDQN,具有更高的单步探索奖励和评价指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Energy efficiency performance in RIS-based integrated satellite–aerial–terrestrial relay networks with deep reinforcement learning

Energy efficiency performance in RIS-based integrated satellite–aerial–terrestrial relay networks with deep reinforcement learning

Integrated satellite–aerial–terrestrial relay networks (ISATRNs) play a vital role in next-gen networks, particularly those with high-altitude platforms (HAP). This study introduces a new model for hybrid optical/RF-based HAP-enabled ISATRNs, incorporating reconfigurable intelligent surfaces (RIS) on unmanned aerial vehicles (UAVs) to optimize access in dense urban areas. Non-orthogonal multiple access is employed for improved spectrum efficiency. The objective is to jointly optimize UAV trajectory, RIS phase shift, and active transmit beamforming while considering energy consumption. A deep reinforcement learning approach using LSTM-DDQN framework is proposed. Numerical results show the effectiveness of our algorithm over traditional DDQN, with higher single-step exploration reward and evaluation metrics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EURASIP Journal on Advances in Signal Processing
EURASIP Journal on Advances in Signal Processing 工程技术-工程:电子与电气
CiteScore
3.50
自引率
10.50%
发文量
109
审稿时长
2.6 months
期刊介绍: The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信