具有非线性信号产生和非局部增长项的抛物-椭圆Keller-Segel系统

IF 1.1 3区 数学 Q2 MATHEMATICS, APPLIED
Pan Zheng
{"title":"具有非线性信号产生和非局部增长项的抛物-椭圆Keller-Segel系统","authors":"Pan Zheng","doi":"10.4310/dpde.2024.v21.n1.a3","DOIUrl":null,"url":null,"abstract":"and nonlocal growth term\\[\\begin{cases}u_t = \\Delta u - \\chi \\nabla \\cdot (u^m \\nabla v) + u \\Biggl( a_0 - a_1 u^\\alpha + a_2 \\displaystyle \\int_\\Omega u^\\sigma dx \\Biggr) & (x, t) \\in \\Omega \\times (0,\\infty) \\; , \\\\0=\\Delta - v + u^\\gamma , & (x, t) \\in \\Omega \\times (0,\\infty) \\; , \\\\\\end{cases}\\]under homogeneous Neumann boundary conditions in a smoothly bounded domain $\\Omega \\subset \\mathbb{R}^n (n \\geq 1)$, where $\\chi \\in \\mathbb{R}, m, \\gamma \\geq 1$ and $a_0, a_1, a_2, \\alpha \\gt 0$. • When $\\chi \\gt 0$, the solution of the above system is global and uniformly bounded, if the parameters satisfy certain suitable assumptions. • When $\\chi \\gt 0$, the system possesses a globally bounded classical solution, provided that $a_1 \\gt a_2 \\lvert \\Omega \\rvert$. These results indicate that the repulsive mechanism plays a crucial role in ensuring the global boundedness of solutions. In addition, the paper derives the large time behavior of globally bounded solutions for the chemo-attractive or chemo-repulsive system by constructing energy functionals.","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a parabolic-elliptic Keller–Segel system with nonlinear signal production and nonlocal growth term\",\"authors\":\"Pan Zheng\",\"doi\":\"10.4310/dpde.2024.v21.n1.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"and nonlocal growth term\\\\[\\\\begin{cases}u_t = \\\\Delta u - \\\\chi \\\\nabla \\\\cdot (u^m \\\\nabla v) + u \\\\Biggl( a_0 - a_1 u^\\\\alpha + a_2 \\\\displaystyle \\\\int_\\\\Omega u^\\\\sigma dx \\\\Biggr) & (x, t) \\\\in \\\\Omega \\\\times (0,\\\\infty) \\\\; , \\\\\\\\0=\\\\Delta - v + u^\\\\gamma , & (x, t) \\\\in \\\\Omega \\\\times (0,\\\\infty) \\\\; , \\\\\\\\\\\\end{cases}\\\\]under homogeneous Neumann boundary conditions in a smoothly bounded domain $\\\\Omega \\\\subset \\\\mathbb{R}^n (n \\\\geq 1)$, where $\\\\chi \\\\in \\\\mathbb{R}, m, \\\\gamma \\\\geq 1$ and $a_0, a_1, a_2, \\\\alpha \\\\gt 0$. • When $\\\\chi \\\\gt 0$, the solution of the above system is global and uniformly bounded, if the parameters satisfy certain suitable assumptions. • When $\\\\chi \\\\gt 0$, the system possesses a globally bounded classical solution, provided that $a_1 \\\\gt a_2 \\\\lvert \\\\Omega \\\\rvert$. These results indicate that the repulsive mechanism plays a crucial role in ensuring the global boundedness of solutions. In addition, the paper derives the large time behavior of globally bounded solutions for the chemo-attractive or chemo-repulsive system by constructing energy functionals.\",\"PeriodicalId\":50562,\"journal\":{\"name\":\"Dynamics of Partial Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamics of Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/dpde.2024.v21.n1.a3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/dpde.2024.v21.n1.a3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

和光滑有界域$\Omega \subset \mathbb{R}^n (n \geq 1)$上齐次Neumann边界条件下的非局部增长项\[\begin{cases}u_t = \Delta u - \chi \nabla \cdot (u^m \nabla v) + u \Biggl( a_0 - a_1 u^\alpha + a_2 \displaystyle \int_\Omega u^\sigma dx \Biggr) & (x, t) \in \Omega \times (0,\infty) \; , \\0=\Delta - v + u^\gamma , & (x, t) \in \Omega \times (0,\infty) \; , \\\end{cases}\],其中$\chi \in \mathbb{R}, m, \gamma \geq 1$和$a_0, a_1, a_2, \alpha \gt 0$。•当$\chi \gt 0$时,如果参数满足某些适当的假设,则上述系统的解是全局一致有界的。•当$\chi \gt 0$时,系统具有一个全局有界的经典解,假设$a_1 \gt a_2 \lvert \Omega \rvert$。这些结果表明,斥力机制在保证解的全局有界性中起着至关重要的作用。此外,通过构造能量泛函,导出了化学吸引或化学排斥系统全局有界解的大时间行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a parabolic-elliptic Keller–Segel system with nonlinear signal production and nonlocal growth term
and nonlocal growth term\[\begin{cases}u_t = \Delta u - \chi \nabla \cdot (u^m \nabla v) + u \Biggl( a_0 - a_1 u^\alpha + a_2 \displaystyle \int_\Omega u^\sigma dx \Biggr) & (x, t) \in \Omega \times (0,\infty) \; , \\0=\Delta - v + u^\gamma , & (x, t) \in \Omega \times (0,\infty) \; , \\\end{cases}\]under homogeneous Neumann boundary conditions in a smoothly bounded domain $\Omega \subset \mathbb{R}^n (n \geq 1)$, where $\chi \in \mathbb{R}, m, \gamma \geq 1$ and $a_0, a_1, a_2, \alpha \gt 0$. • When $\chi \gt 0$, the solution of the above system is global and uniformly bounded, if the parameters satisfy certain suitable assumptions. • When $\chi \gt 0$, the system possesses a globally bounded classical solution, provided that $a_1 \gt a_2 \lvert \Omega \rvert$. These results indicate that the repulsive mechanism plays a crucial role in ensuring the global boundedness of solutions. In addition, the paper derives the large time behavior of globally bounded solutions for the chemo-attractive or chemo-repulsive system by constructing energy functionals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishes novel results in the areas of partial differential equations and dynamical systems in general, with priority given to dynamical system theory or dynamical aspects of partial differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信