{"title":"具有非线性信号产生和非局部增长项的抛物-椭圆Keller-Segel系统","authors":"Pan Zheng","doi":"10.4310/dpde.2024.v21.n1.a3","DOIUrl":null,"url":null,"abstract":"and nonlocal growth term\\[\\begin{cases}u_t = \\Delta u - \\chi \\nabla \\cdot (u^m \\nabla v) + u \\Biggl( a_0 - a_1 u^\\alpha + a_2 \\displaystyle \\int_\\Omega u^\\sigma dx \\Biggr) & (x, t) \\in \\Omega \\times (0,\\infty) \\; , \\\\0=\\Delta - v + u^\\gamma , & (x, t) \\in \\Omega \\times (0,\\infty) \\; , \\\\\\end{cases}\\]under homogeneous Neumann boundary conditions in a smoothly bounded domain $\\Omega \\subset \\mathbb{R}^n (n \\geq 1)$, where $\\chi \\in \\mathbb{R}, m, \\gamma \\geq 1$ and $a_0, a_1, a_2, \\alpha \\gt 0$. • When $\\chi \\gt 0$, the solution of the above system is global and uniformly bounded, if the parameters satisfy certain suitable assumptions. • When $\\chi \\gt 0$, the system possesses a globally bounded classical solution, provided that $a_1 \\gt a_2 \\lvert \\Omega \\rvert$. These results indicate that the repulsive mechanism plays a crucial role in ensuring the global boundedness of solutions. In addition, the paper derives the large time behavior of globally bounded solutions for the chemo-attractive or chemo-repulsive system by constructing energy functionals.","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a parabolic-elliptic Keller–Segel system with nonlinear signal production and nonlocal growth term\",\"authors\":\"Pan Zheng\",\"doi\":\"10.4310/dpde.2024.v21.n1.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"and nonlocal growth term\\\\[\\\\begin{cases}u_t = \\\\Delta u - \\\\chi \\\\nabla \\\\cdot (u^m \\\\nabla v) + u \\\\Biggl( a_0 - a_1 u^\\\\alpha + a_2 \\\\displaystyle \\\\int_\\\\Omega u^\\\\sigma dx \\\\Biggr) & (x, t) \\\\in \\\\Omega \\\\times (0,\\\\infty) \\\\; , \\\\\\\\0=\\\\Delta - v + u^\\\\gamma , & (x, t) \\\\in \\\\Omega \\\\times (0,\\\\infty) \\\\; , \\\\\\\\\\\\end{cases}\\\\]under homogeneous Neumann boundary conditions in a smoothly bounded domain $\\\\Omega \\\\subset \\\\mathbb{R}^n (n \\\\geq 1)$, where $\\\\chi \\\\in \\\\mathbb{R}, m, \\\\gamma \\\\geq 1$ and $a_0, a_1, a_2, \\\\alpha \\\\gt 0$. • When $\\\\chi \\\\gt 0$, the solution of the above system is global and uniformly bounded, if the parameters satisfy certain suitable assumptions. • When $\\\\chi \\\\gt 0$, the system possesses a globally bounded classical solution, provided that $a_1 \\\\gt a_2 \\\\lvert \\\\Omega \\\\rvert$. These results indicate that the repulsive mechanism plays a crucial role in ensuring the global boundedness of solutions. In addition, the paper derives the large time behavior of globally bounded solutions for the chemo-attractive or chemo-repulsive system by constructing energy functionals.\",\"PeriodicalId\":50562,\"journal\":{\"name\":\"Dynamics of Partial Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamics of Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/dpde.2024.v21.n1.a3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/dpde.2024.v21.n1.a3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
On a parabolic-elliptic Keller–Segel system with nonlinear signal production and nonlocal growth term
and nonlocal growth term\[\begin{cases}u_t = \Delta u - \chi \nabla \cdot (u^m \nabla v) + u \Biggl( a_0 - a_1 u^\alpha + a_2 \displaystyle \int_\Omega u^\sigma dx \Biggr) & (x, t) \in \Omega \times (0,\infty) \; , \\0=\Delta - v + u^\gamma , & (x, t) \in \Omega \times (0,\infty) \; , \\\end{cases}\]under homogeneous Neumann boundary conditions in a smoothly bounded domain $\Omega \subset \mathbb{R}^n (n \geq 1)$, where $\chi \in \mathbb{R}, m, \gamma \geq 1$ and $a_0, a_1, a_2, \alpha \gt 0$. • When $\chi \gt 0$, the solution of the above system is global and uniformly bounded, if the parameters satisfy certain suitable assumptions. • When $\chi \gt 0$, the system possesses a globally bounded classical solution, provided that $a_1 \gt a_2 \lvert \Omega \rvert$. These results indicate that the repulsive mechanism plays a crucial role in ensuring the global boundedness of solutions. In addition, the paper derives the large time behavior of globally bounded solutions for the chemo-attractive or chemo-repulsive system by constructing energy functionals.
期刊介绍:
Publishes novel results in the areas of partial differential equations and dynamical systems in general, with priority given to dynamical system theory or dynamical aspects of partial differential equations.