具有大初速度和微旋转速度的非均匀微极流体密度依赖粘度三维Cauchy问题的全局适定性

IF 1.1 3区 数学 Q2 MATHEMATICS, APPLIED
Ling Zhou, Chun-Lei Tang
{"title":"具有大初速度和微旋转速度的非均匀微极流体密度依赖粘度三维Cauchy问题的全局适定性","authors":"Ling Zhou, Chun-Lei Tang","doi":"10.4310/dpde.2024.v21.n1.a4","DOIUrl":null,"url":null,"abstract":"We show the global well-posedness to the three-dimensional (3D) Cauchy problem of nonhomogeneous micropolar fluids with density-dependent viscosity and vacuum in $\\mathbb{R}^3$ provided that the initial mass is sufficiently small. Moreover, we also obtain that the gradients of velocity and micro-rotational velocity converge exponentially to zero in $H^1$ as time goes to infinity. Our analysis relies heavily on delicate energy estimates and <i>the structural characteristic of the system under consideration</i>. In particular, the initial velocity and micro-rotational velocity could be arbitrarily large.","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global well-posedness to the 3D Cauchy problem of nonhomogeneous micropolar fluids involving density-dependent viscosity with large initial velocity and micro-rotational velocity\",\"authors\":\"Ling Zhou, Chun-Lei Tang\",\"doi\":\"10.4310/dpde.2024.v21.n1.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show the global well-posedness to the three-dimensional (3D) Cauchy problem of nonhomogeneous micropolar fluids with density-dependent viscosity and vacuum in $\\\\mathbb{R}^3$ provided that the initial mass is sufficiently small. Moreover, we also obtain that the gradients of velocity and micro-rotational velocity converge exponentially to zero in $H^1$ as time goes to infinity. Our analysis relies heavily on delicate energy estimates and <i>the structural characteristic of the system under consideration</i>. In particular, the initial velocity and micro-rotational velocity could be arbitrarily large.\",\"PeriodicalId\":50562,\"journal\":{\"name\":\"Dynamics of Partial Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamics of Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/dpde.2024.v21.n1.a4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/dpde.2024.v21.n1.a4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在初始质量足够小的条件下,在$\mathbb{R}^3$中给出了具有密度依赖粘度和真空的非均匀微极流体三维(3D) Cauchy问题的全局适定性。此外,我们还得到了随着时间趋于无穷,速度和微旋转速度的梯度在$H^1$内呈指数收敛于零。我们的分析在很大程度上依赖于精细的能量估计和所考虑系统的结构特征。特别是初速度和微旋转速度可以任意大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global well-posedness to the 3D Cauchy problem of nonhomogeneous micropolar fluids involving density-dependent viscosity with large initial velocity and micro-rotational velocity
We show the global well-posedness to the three-dimensional (3D) Cauchy problem of nonhomogeneous micropolar fluids with density-dependent viscosity and vacuum in $\mathbb{R}^3$ provided that the initial mass is sufficiently small. Moreover, we also obtain that the gradients of velocity and micro-rotational velocity converge exponentially to zero in $H^1$ as time goes to infinity. Our analysis relies heavily on delicate energy estimates and the structural characteristic of the system under consideration. In particular, the initial velocity and micro-rotational velocity could be arbitrarily large.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishes novel results in the areas of partial differential equations and dynamical systems in general, with priority given to dynamical system theory or dynamical aspects of partial differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信