非齐次不可压缩欧拉方程在Besov-Herz空间中的适定性

IF 1.1 3区 数学 Q2 MATHEMATICS, APPLIED
Lucas C. F. Ferreira, Daniel F. Machado
{"title":"非齐次不可压缩欧拉方程在Besov-Herz空间中的适定性","authors":"Lucas C. F. Ferreira, Daniel F. Machado","doi":"10.4310/dpde.2024.v21.n1.a1","DOIUrl":null,"url":null,"abstract":"In this paper we study the inhomogeneous incompressible Euler equations in the whole space $\\mathbb{R}^n$ with $n \\geq 3$. We obtain well-posedness and blow-up results in a new framework for inhomogeneous fluids, more precisely Besov–Herz spaces that are Besov spaces based on Herz ones, covering particularly critical cases of the regularity. Comparing with previous works on Besov spaces, our results provide a larger initial data class for a well-defined flow. For that, we need to obtain suitable linear estimates for some conservation-law models in our setting such as transport equations and the linearized inhomogeneous Euler system.","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the well-posedness in Besov–Herz spaces for the inhomogeneous incompressible Euler equations\",\"authors\":\"Lucas C. F. Ferreira, Daniel F. Machado\",\"doi\":\"10.4310/dpde.2024.v21.n1.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the inhomogeneous incompressible Euler equations in the whole space $\\\\mathbb{R}^n$ with $n \\\\geq 3$. We obtain well-posedness and blow-up results in a new framework for inhomogeneous fluids, more precisely Besov–Herz spaces that are Besov spaces based on Herz ones, covering particularly critical cases of the regularity. Comparing with previous works on Besov spaces, our results provide a larger initial data class for a well-defined flow. For that, we need to obtain suitable linear estimates for some conservation-law models in our setting such as transport equations and the linearized inhomogeneous Euler system.\",\"PeriodicalId\":50562,\"journal\":{\"name\":\"Dynamics of Partial Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamics of Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/dpde.2024.v21.n1.a1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/dpde.2024.v21.n1.a1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

本文利用$n \geq 3$研究了整个空间$\mathbb{R}^n$上的非齐次不可压缩欧拉方程。我们在非均匀流体的新框架下获得了适定性和爆破结果,更准确地说,是基于Herz空间的Besov - Herz空间,涵盖了正则性的特别关键情况。与以前在Besov空间上的工作相比,我们的结果为定义良好的流提供了更大的初始数据类。为此,我们需要对一些守恒律模型,如输运方程和线性化非齐次欧拉系统,获得合适的线性估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the well-posedness in Besov–Herz spaces for the inhomogeneous incompressible Euler equations
In this paper we study the inhomogeneous incompressible Euler equations in the whole space $\mathbb{R}^n$ with $n \geq 3$. We obtain well-posedness and blow-up results in a new framework for inhomogeneous fluids, more precisely Besov–Herz spaces that are Besov spaces based on Herz ones, covering particularly critical cases of the regularity. Comparing with previous works on Besov spaces, our results provide a larger initial data class for a well-defined flow. For that, we need to obtain suitable linear estimates for some conservation-law models in our setting such as transport equations and the linearized inhomogeneous Euler system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishes novel results in the areas of partial differential equations and dynamical systems in general, with priority given to dynamical system theory or dynamical aspects of partial differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信