Romain Branchereau, Samuel Bronstein, Anthony Gauvan
{"title":"双曲三角形上的极大算子","authors":"Romain Branchereau, Samuel Bronstein, Anthony Gauvan","doi":"10.1007/s13348-023-00419-3","DOIUrl":null,"url":null,"abstract":"<p>We characterize the boundedness properties on the spaces <span>\\(L^p( \\mathbb {H}^2)\\)</span> of the maximal operator <span>\\(M_\\mathcal {B}\\)</span> where <span>\\(\\mathcal {B}\\)</span> is an arbitrary family of hyperbolic triangles stable by isometries. </p>","PeriodicalId":50993,"journal":{"name":"Collectanea Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximal operators on hyperbolic triangles\",\"authors\":\"Romain Branchereau, Samuel Bronstein, Anthony Gauvan\",\"doi\":\"10.1007/s13348-023-00419-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We characterize the boundedness properties on the spaces <span>\\\\(L^p( \\\\mathbb {H}^2)\\\\)</span> of the maximal operator <span>\\\\(M_\\\\mathcal {B}\\\\)</span> where <span>\\\\(\\\\mathcal {B}\\\\)</span> is an arbitrary family of hyperbolic triangles stable by isometries. </p>\",\"PeriodicalId\":50993,\"journal\":{\"name\":\"Collectanea Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Collectanea Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13348-023-00419-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collectanea Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13348-023-00419-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We characterize the boundedness properties on the spaces \(L^p( \mathbb {H}^2)\) of the maximal operator \(M_\mathcal {B}\) where \(\mathcal {B}\) is an arbitrary family of hyperbolic triangles stable by isometries.
期刊介绍:
Collectanea Mathematica publishes original research peer reviewed papers of high quality in all fields of pure and applied mathematics. It is an international journal of the University of Barcelona and the oldest mathematical journal in Spain. It was founded in 1948 by José M. Orts. Previously self-published by the Institut de Matemàtica (IMUB) of the Universitat de Barcelona, as of 2011 it is published by Springer.