{"title":"基于现有的DNA条形码参考文库,大多数土壤和凋落物节肢动物是无法识别的","authors":"Ernesto Recuero, Frank E Etzler, Michael Caterino","doi":"10.1093/cz/zoad051","DOIUrl":null,"url":null,"abstract":"We are far from knowing all species living on the planet. Understanding biodiversity is demanding and requires time and expertise. Most groups are understudied given problems of identifying and delimiting species. DNA barcoding emerged to overcome some of the difficulties in identifying species. Its limitations derive from incomplete taxonomic knowledge and the lack of comprehensive DNA barcode libraries for so many taxonomic groups. Here, we evaluate how useful barcoding is for identifying arthropods from highly diverse leaf litter communities in the southern Appalachian Mountains (USA). We used three reference databases and several automated classification methods on a data set including several arthropod groups. Acari, Araneae, Collembola, Coleoptera, Diptera, and Hymenoptera were well represented, showing different performances across methods and databases. Spiders performed the best, with correct identifications rates to species and genus levels of ~50% across databases. Springtails performed poorly, no barcodes were identified to species or genus. Other groups showed poor to mediocre performance, from around 3% (mites) to 20% (beetles) correctly identified barcodes to species, but also with some false identifications. In general, BOLD-based identification offered the best identification results but, in all cases except spiders, performance is poor, with less than a fifth of specimens correctly identified to genus or species. Our results indicate that the soil arthropod fauna is still insufficiently documented, with many species unrepresented in DNA barcode libraries. More effort toward integrative taxonomic characterization is needed to complete our reference libraries before we can rely on DNA barcoding as a universally applicable identification method.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Most soil and litter arthropods are unidentifiable based on current DNA barcode reference libraries\",\"authors\":\"Ernesto Recuero, Frank E Etzler, Michael Caterino\",\"doi\":\"10.1093/cz/zoad051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are far from knowing all species living on the planet. Understanding biodiversity is demanding and requires time and expertise. Most groups are understudied given problems of identifying and delimiting species. DNA barcoding emerged to overcome some of the difficulties in identifying species. Its limitations derive from incomplete taxonomic knowledge and the lack of comprehensive DNA barcode libraries for so many taxonomic groups. Here, we evaluate how useful barcoding is for identifying arthropods from highly diverse leaf litter communities in the southern Appalachian Mountains (USA). We used three reference databases and several automated classification methods on a data set including several arthropod groups. Acari, Araneae, Collembola, Coleoptera, Diptera, and Hymenoptera were well represented, showing different performances across methods and databases. Spiders performed the best, with correct identifications rates to species and genus levels of ~50% across databases. Springtails performed poorly, no barcodes were identified to species or genus. Other groups showed poor to mediocre performance, from around 3% (mites) to 20% (beetles) correctly identified barcodes to species, but also with some false identifications. In general, BOLD-based identification offered the best identification results but, in all cases except spiders, performance is poor, with less than a fifth of specimens correctly identified to genus or species. Our results indicate that the soil arthropod fauna is still insufficiently documented, with many species unrepresented in DNA barcode libraries. More effort toward integrative taxonomic characterization is needed to complete our reference libraries before we can rely on DNA barcoding as a universally applicable identification method.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/cz/zoad051\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/cz/zoad051","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Most soil and litter arthropods are unidentifiable based on current DNA barcode reference libraries
We are far from knowing all species living on the planet. Understanding biodiversity is demanding and requires time and expertise. Most groups are understudied given problems of identifying and delimiting species. DNA barcoding emerged to overcome some of the difficulties in identifying species. Its limitations derive from incomplete taxonomic knowledge and the lack of comprehensive DNA barcode libraries for so many taxonomic groups. Here, we evaluate how useful barcoding is for identifying arthropods from highly diverse leaf litter communities in the southern Appalachian Mountains (USA). We used three reference databases and several automated classification methods on a data set including several arthropod groups. Acari, Araneae, Collembola, Coleoptera, Diptera, and Hymenoptera were well represented, showing different performances across methods and databases. Spiders performed the best, with correct identifications rates to species and genus levels of ~50% across databases. Springtails performed poorly, no barcodes were identified to species or genus. Other groups showed poor to mediocre performance, from around 3% (mites) to 20% (beetles) correctly identified barcodes to species, but also with some false identifications. In general, BOLD-based identification offered the best identification results but, in all cases except spiders, performance is poor, with less than a fifth of specimens correctly identified to genus or species. Our results indicate that the soil arthropod fauna is still insufficiently documented, with many species unrepresented in DNA barcode libraries. More effort toward integrative taxonomic characterization is needed to complete our reference libraries before we can rely on DNA barcoding as a universally applicable identification method.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.