一种参考角立方惯性悬架装置的研制

IF 1.8 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Bing Zhang, Xiaoyi Zhu, Qiong Wu, Bing Xue, Lili Xing, Yanxiong Wu, Peng Su, Xiaolei Wang, Yuru Wang, Shuaibo Zhao
{"title":"一种参考角立方惯性悬架装置的研制","authors":"Bing Zhang, Xiaoyi Zhu, Qiong Wu, Bing Xue, Lili Xing, Yanxiong Wu, Peng Su, Xiaolei Wang, Yuru Wang, Shuaibo Zhao","doi":"10.5194/gi-2023-16","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> The seismometer synchronous observation and zero crossing methods are applied to laser interferometer absolute gravimeter to suppress the vibration interference. However, during the synchronous observation of the seismometer and the gravimeter, the observation point of the seismometer does not coincide with the reference corner cube in space, resulting in spatial dislocation, which cannot accurately reflect the vibration state of the reference corner cube. So, it is necessary to hang the reference corner cube on the elastic element to directly measure its vibration acceleration measurement. In this paper, an open-loop reference corner cube inertial suspension device(RCCISD) hanging the reference corner cube was developed based on the principle of seismometer, which is used to measure the vibration acceleration of the reference corner cube of the laser interferometer absolute gravimeter. Experimental test results show that the power spectrum of gravitational acceleration calculated by an interference fringe observed jointly by the RCCISD is about 40 dB lower than that of the reference corner cube directly placed on the ground. RCCISD can restrain the vibration interference to a certain extent, not only can it measure the reference corner cube vibration more accurately than the seismograph synchronous observation method for the vibration compensation of gravity measurement, but also the volume is about 1 / 3 of the Super-Spring volume, which can greatly reduce the height of the gravimeter.","PeriodicalId":48742,"journal":{"name":"Geoscientific Instrumentation Methods and Data Systems","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The development of a reference corner cube inertial suspension device\",\"authors\":\"Bing Zhang, Xiaoyi Zhu, Qiong Wu, Bing Xue, Lili Xing, Yanxiong Wu, Peng Su, Xiaolei Wang, Yuru Wang, Shuaibo Zhao\",\"doi\":\"10.5194/gi-2023-16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> The seismometer synchronous observation and zero crossing methods are applied to laser interferometer absolute gravimeter to suppress the vibration interference. However, during the synchronous observation of the seismometer and the gravimeter, the observation point of the seismometer does not coincide with the reference corner cube in space, resulting in spatial dislocation, which cannot accurately reflect the vibration state of the reference corner cube. So, it is necessary to hang the reference corner cube on the elastic element to directly measure its vibration acceleration measurement. In this paper, an open-loop reference corner cube inertial suspension device(RCCISD) hanging the reference corner cube was developed based on the principle of seismometer, which is used to measure the vibration acceleration of the reference corner cube of the laser interferometer absolute gravimeter. Experimental test results show that the power spectrum of gravitational acceleration calculated by an interference fringe observed jointly by the RCCISD is about 40 dB lower than that of the reference corner cube directly placed on the ground. RCCISD can restrain the vibration interference to a certain extent, not only can it measure the reference corner cube vibration more accurately than the seismograph synchronous observation method for the vibration compensation of gravity measurement, but also the volume is about 1 / 3 of the Super-Spring volume, which can greatly reduce the height of the gravimeter.\",\"PeriodicalId\":48742,\"journal\":{\"name\":\"Geoscientific Instrumentation Methods and Data Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoscientific Instrumentation Methods and Data Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/gi-2023-16\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscientific Instrumentation Methods and Data Systems","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/gi-2023-16","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要。将地震仪同步观测和过零方法应用于激光干涉仪绝对重力仪,以抑制振动干扰。但在地震仪与重力仪同步观测时,地震仪的观测点在空间上与参考角立方不重合,造成空间错位,无法准确反映参考角立方的振动状态。因此,有必要将参考角立方悬挂在弹性元件上,直接测量其振动加速度。本文基于地震仪原理,研制了一种悬挂参考角立方的开环参考角立方惯性悬架装置(RCCISD),用于测量激光干涉仪绝对重力仪参考角立方的振动加速度。实验测试结果表明,由RCCISD联合观测的干涉条纹计算的重力加速度功率谱比直接放置在地面上的参考角立方的功率谱低约40 dB。RCCISD可以在一定程度上抑制振动干扰,不仅可以比地震仪同步观测方法更精确地测量参考角立方振动,用于重力测量的振动补偿,而且体积约为超级弹簧体积的1 / 3,可以大大降低重力仪的高度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The development of a reference corner cube inertial suspension device
Abstract. The seismometer synchronous observation and zero crossing methods are applied to laser interferometer absolute gravimeter to suppress the vibration interference. However, during the synchronous observation of the seismometer and the gravimeter, the observation point of the seismometer does not coincide with the reference corner cube in space, resulting in spatial dislocation, which cannot accurately reflect the vibration state of the reference corner cube. So, it is necessary to hang the reference corner cube on the elastic element to directly measure its vibration acceleration measurement. In this paper, an open-loop reference corner cube inertial suspension device(RCCISD) hanging the reference corner cube was developed based on the principle of seismometer, which is used to measure the vibration acceleration of the reference corner cube of the laser interferometer absolute gravimeter. Experimental test results show that the power spectrum of gravitational acceleration calculated by an interference fringe observed jointly by the RCCISD is about 40 dB lower than that of the reference corner cube directly placed on the ground. RCCISD can restrain the vibration interference to a certain extent, not only can it measure the reference corner cube vibration more accurately than the seismograph synchronous observation method for the vibration compensation of gravity measurement, but also the volume is about 1 / 3 of the Super-Spring volume, which can greatly reduce the height of the gravimeter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geoscientific Instrumentation Methods and Data Systems
Geoscientific Instrumentation Methods and Data Systems GEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
3.70
自引率
0.00%
发文量
23
审稿时长
37 weeks
期刊介绍: Geoscientific Instrumentation, Methods and Data Systems (GI) is an open-access interdisciplinary electronic journal for swift publication of original articles and short communications in the area of geoscientific instruments. It covers three main areas: (i) atmospheric and geospace sciences, (ii) earth science, and (iii) ocean science. A unique feature of the journal is the emphasis on synergy between science and technology that facilitates advances in GI. These advances include but are not limited to the following: concepts, design, and description of instrumentation and data systems; retrieval techniques of scientific products from measurements; calibration and data quality assessment; uncertainty in measurements; newly developed and planned research platforms and community instrumentation capabilities; major national and international field campaigns and observational research programs; new observational strategies to address societal needs in areas such as monitoring climate change and preventing natural disasters; networking of instruments for enhancing high temporal and spatial resolution of observations. GI has an innovative two-stage publication process involving the scientific discussion forum Geoscientific Instrumentation, Methods and Data Systems Discussions (GID), which has been designed to do the following: foster scientific discussion; maximize the effectiveness and transparency of scientific quality assurance; enable rapid publication; make scientific publications freely accessible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信