一类隐式微分方程组的控制问题

Pub Date : 2023-11-23 DOI:10.1134/s0012266123090124
E. S. Zhukovskiy, I. D. Serova
{"title":"一类隐式微分方程组的控制问题","authors":"E. S. Zhukovskiy, I. D. Serova","doi":"10.1134/s0012266123090124","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We consider the differential inclusion <span>\\(F(t,x,\\dot {x})\\ni 0 \\)</span> with the constraint <span>\\(\\dot {x}(t)\\in B(t) \\)</span>, <span>\\(t\\in [a, b]\\)</span>, on the\nderivative of the unknown function, where <span>\\(F\\)</span> and\n<span>\\(B \\)</span> are set-valued mappings, <span>\\(F:[a,b]\\times \\mathbb {R}^n\\times \\mathbb {R}^n\\times \\mathbb {R }^m\\rightrightarrows \\mathbb {R}^k \\)</span> is superpositionally measurable, and\n<span>\\( B:[a,b]\\rightrightarrows \\mathbb {R}^n\\)</span> is\nmeasurable. In terms of the properties of ordered covering and the monotonicity of set-valued\nmappings acting in finite-dimensional spaces, for the Cauchy problem we obtain conditions for the\nexistence and estimates of solutions as well as conditions for the existence of a solution with the\nsmallest derivative. Based on these results, we study a control system of the form\n<span>\\(f(t,x,\\dot {x},u)=0\\)</span>, <span>\\(\\dot {x}(t)\\in B(t) \\)</span>, <span>\\(u(t)\\in U(t,x,\\dot {x}) \\)</span>, <span>\\(t\\in [a,b]\\)</span>.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a Control Problem for a System of Implicit Differential Equations\",\"authors\":\"E. S. Zhukovskiy, I. D. Serova\",\"doi\":\"10.1134/s0012266123090124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> We consider the differential inclusion <span>\\\\(F(t,x,\\\\dot {x})\\\\ni 0 \\\\)</span> with the constraint <span>\\\\(\\\\dot {x}(t)\\\\in B(t) \\\\)</span>, <span>\\\\(t\\\\in [a, b]\\\\)</span>, on the\\nderivative of the unknown function, where <span>\\\\(F\\\\)</span> and\\n<span>\\\\(B \\\\)</span> are set-valued mappings, <span>\\\\(F:[a,b]\\\\times \\\\mathbb {R}^n\\\\times \\\\mathbb {R}^n\\\\times \\\\mathbb {R }^m\\\\rightrightarrows \\\\mathbb {R}^k \\\\)</span> is superpositionally measurable, and\\n<span>\\\\( B:[a,b]\\\\rightrightarrows \\\\mathbb {R}^n\\\\)</span> is\\nmeasurable. In terms of the properties of ordered covering and the monotonicity of set-valued\\nmappings acting in finite-dimensional spaces, for the Cauchy problem we obtain conditions for the\\nexistence and estimates of solutions as well as conditions for the existence of a solution with the\\nsmallest derivative. Based on these results, we study a control system of the form\\n<span>\\\\(f(t,x,\\\\dot {x},u)=0\\\\)</span>, <span>\\\\(\\\\dot {x}(t)\\\\in B(t) \\\\)</span>, <span>\\\\(u(t)\\\\in U(t,x,\\\\dot {x}) \\\\)</span>, <span>\\\\(t\\\\in [a,b]\\\\)</span>.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0012266123090124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0012266123090124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要考虑未知函数导数的微分包含\(F(t,x,\dot {x})\ni 0 \)和约束\(\dot {x}(t)\in B(t) \), \(t\in [a, b]\),其中\(F\)和\(B \)是集值映射,\(F:[a,b]\times \mathbb {R}^n\times \mathbb {R}^n\times \mathbb {R }^m\rightrightarrows \mathbb {R}^k \)是叠加可测的,\( B:[a,b]\rightrightarrows \mathbb {R}^n\)是可测的。利用有限维空间中集值映射的有序覆盖性质和单调性,得到了柯西问题解的存在性、估计性和导数最小解的存在性条件。基于这些结果,我们研究了一种形式为\(f(t,x,\dot {x},u)=0\), \(\dot {x}(t)\in B(t) \), \(u(t)\in U(t,x,\dot {x}) \), \(t\in [a,b]\)的控制系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On a Control Problem for a System of Implicit Differential Equations

Abstract

We consider the differential inclusion \(F(t,x,\dot {x})\ni 0 \) with the constraint \(\dot {x}(t)\in B(t) \), \(t\in [a, b]\), on the derivative of the unknown function, where \(F\) and \(B \) are set-valued mappings, \(F:[a,b]\times \mathbb {R}^n\times \mathbb {R}^n\times \mathbb {R }^m\rightrightarrows \mathbb {R}^k \) is superpositionally measurable, and \( B:[a,b]\rightrightarrows \mathbb {R}^n\) is measurable. In terms of the properties of ordered covering and the monotonicity of set-valued mappings acting in finite-dimensional spaces, for the Cauchy problem we obtain conditions for the existence and estimates of solutions as well as conditions for the existence of a solution with the smallest derivative. Based on these results, we study a control system of the form \(f(t,x,\dot {x},u)=0\), \(\dot {x}(t)\in B(t) \), \(u(t)\in U(t,x,\dot {x}) \), \(t\in [a,b]\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信