非平稳Navier-Stokes方程弱解压力函数的正则性

IF 0.8 4区 数学 Q2 MATHEMATICS
E. V. Amosova
{"title":"非平稳Navier-Stokes方程弱解压力函数的正则性","authors":"E. V. Amosova","doi":"10.1134/s0012266123090069","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We study the nonstationary system of Navier–Stokes equations for an incompressible fluid.\nBased on a regularized problem that takes into account the relaxation of the velocity field into a\nsolenoidal field, the existence of a pressure function almost everywhere in the domain under\nconsideration for solutions in the Hopf class is substantiated. Using the proposed regularization,\nwe prove the existence of more regular weak solutions of the original problem without smallness\nrestrictions on the original data. A uniqueness theorem is proven in the two-dimensional case.\n</p>","PeriodicalId":50580,"journal":{"name":"Differential Equations","volume":"65 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularity of the Pressure Function for Weak Solutions of the Nonstationary Navier–Stokes Equations\",\"authors\":\"E. V. Amosova\",\"doi\":\"10.1134/s0012266123090069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> We study the nonstationary system of Navier–Stokes equations for an incompressible fluid.\\nBased on a regularized problem that takes into account the relaxation of the velocity field into a\\nsolenoidal field, the existence of a pressure function almost everywhere in the domain under\\nconsideration for solutions in the Hopf class is substantiated. Using the proposed regularization,\\nwe prove the existence of more regular weak solutions of the original problem without smallness\\nrestrictions on the original data. A uniqueness theorem is proven in the two-dimensional case.\\n</p>\",\"PeriodicalId\":50580,\"journal\":{\"name\":\"Differential Equations\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0012266123090069\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0012266123090069","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究不可压缩流体的非定常Navier-Stokes方程组。基于一个考虑速度场弛豫为螺线场的正则化问题,证明了在Hopf类解的考虑域中几乎处处存在压力函数。利用提出的正则化方法,我们证明了原问题存在更正则的弱解,而不受原始数据的小约束。在二维情况下证明了唯一性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularity of the Pressure Function for Weak Solutions of the Nonstationary Navier–Stokes Equations

Abstract

We study the nonstationary system of Navier–Stokes equations for an incompressible fluid. Based on a regularized problem that takes into account the relaxation of the velocity field into a solenoidal field, the existence of a pressure function almost everywhere in the domain under consideration for solutions in the Hopf class is substantiated. Using the proposed regularization, we prove the existence of more regular weak solutions of the original problem without smallness restrictions on the original data. A uniqueness theorem is proven in the two-dimensional case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Differential Equations
Differential Equations 数学-数学
CiteScore
1.30
自引率
33.30%
发文量
72
审稿时长
3-8 weeks
期刊介绍: Differential Equations is a journal devoted to differential equations and the associated integral equations. The journal publishes original articles by authors from all countries and accepts manuscripts in English and Russian. The topics of the journal cover ordinary differential equations, partial differential equations, spectral theory of differential operators, integral and integral–differential equations, difference equations and their applications in control theory, mathematical modeling, shell theory, informatics, and oscillation theory. The journal is published in collaboration with the Department of Mathematics and the Division of Nanotechnologies and Information Technologies of the Russian Academy of Sciences and the Institute of Mathematics of the National Academy of Sciences of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信