{"title":"仅通过仿真实验来模拟现实差距对机器人群自动设计的影响","authors":"Antoine Ligot, Mauro Birattari","doi":"10.1007/s11721-019-00175-w","DOIUrl":null,"url":null,"abstract":"The reality gap—the discrepancy between reality and simulation—is a critical issue in the off-line automatic design of control software for robot swarms, as well as for single robots. It is understood that the reality gap manifests itself as a drop in performance: when control software generated in simulation is ported to physical robots, the performance observed is often disappointing compared with the one obtained in simulation. In this paper, we investigate whether, to observe the effects of the reality gap, it is necessary to assume that the control software is designed in a context that is simpler than the one in which it is evaluated. In the first experiment, we show that a performance drop may be observed also in an artificial, simulation-only reality gap: control software is generated on the basis of a simulation model and assessed on a second one. We will call this second model a <i>pseudo-reality</i>. We selected the simulation model to be used as a pseudo-reality by trial and error, so as to qualitatively replicate previously published observations made in experiments with physical robots. The results show that a performance drop occurs even if we can exclude that pseudo-reality is more complex than the simulation model used for the design. In the second experiment, we eliminate the trial-and-error selection of the first experiment by evaluating control software across multiple pseudo-realities, which are sampled around the original simulation model used for the design. The results of the second experiment confirm those of the first one and show that they do not depend on the specific pseudo-reality we previously selected by trial and error. Moreover, they suggest that one could use multiple pseudo-realities to evaluate automatic design methods and, from this simulation-only evaluation, infer their robustness to the reality gap.","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"75 1","pages":"1 - 24"},"PeriodicalIF":2.1000,"publicationDate":"2019-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Simulation-only experiments to mimic the effects of the reality gap in the automatic design of robot swarms\",\"authors\":\"Antoine Ligot, Mauro Birattari\",\"doi\":\"10.1007/s11721-019-00175-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reality gap—the discrepancy between reality and simulation—is a critical issue in the off-line automatic design of control software for robot swarms, as well as for single robots. It is understood that the reality gap manifests itself as a drop in performance: when control software generated in simulation is ported to physical robots, the performance observed is often disappointing compared with the one obtained in simulation. In this paper, we investigate whether, to observe the effects of the reality gap, it is necessary to assume that the control software is designed in a context that is simpler than the one in which it is evaluated. In the first experiment, we show that a performance drop may be observed also in an artificial, simulation-only reality gap: control software is generated on the basis of a simulation model and assessed on a second one. We will call this second model a <i>pseudo-reality</i>. We selected the simulation model to be used as a pseudo-reality by trial and error, so as to qualitatively replicate previously published observations made in experiments with physical robots. The results show that a performance drop occurs even if we can exclude that pseudo-reality is more complex than the simulation model used for the design. In the second experiment, we eliminate the trial-and-error selection of the first experiment by evaluating control software across multiple pseudo-realities, which are sampled around the original simulation model used for the design. The results of the second experiment confirm those of the first one and show that they do not depend on the specific pseudo-reality we previously selected by trial and error. Moreover, they suggest that one could use multiple pseudo-realities to evaluate automatic design methods and, from this simulation-only evaluation, infer their robustness to the reality gap.\",\"PeriodicalId\":51284,\"journal\":{\"name\":\"Swarm Intelligence\",\"volume\":\"75 1\",\"pages\":\"1 - 24\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2019-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swarm Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11721-019-00175-w\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11721-019-00175-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Simulation-only experiments to mimic the effects of the reality gap in the automatic design of robot swarms
The reality gap—the discrepancy between reality and simulation—is a critical issue in the off-line automatic design of control software for robot swarms, as well as for single robots. It is understood that the reality gap manifests itself as a drop in performance: when control software generated in simulation is ported to physical robots, the performance observed is often disappointing compared with the one obtained in simulation. In this paper, we investigate whether, to observe the effects of the reality gap, it is necessary to assume that the control software is designed in a context that is simpler than the one in which it is evaluated. In the first experiment, we show that a performance drop may be observed also in an artificial, simulation-only reality gap: control software is generated on the basis of a simulation model and assessed on a second one. We will call this second model a pseudo-reality. We selected the simulation model to be used as a pseudo-reality by trial and error, so as to qualitatively replicate previously published observations made in experiments with physical robots. The results show that a performance drop occurs even if we can exclude that pseudo-reality is more complex than the simulation model used for the design. In the second experiment, we eliminate the trial-and-error selection of the first experiment by evaluating control software across multiple pseudo-realities, which are sampled around the original simulation model used for the design. The results of the second experiment confirm those of the first one and show that they do not depend on the specific pseudo-reality we previously selected by trial and error. Moreover, they suggest that one could use multiple pseudo-realities to evaluate automatic design methods and, from this simulation-only evaluation, infer their robustness to the reality gap.
期刊介绍:
Swarm Intelligence is the principal peer-reviewed publication dedicated to reporting on research
and developments in the multidisciplinary field of swarm intelligence. The journal publishes
original research articles and occasional review articles on theoretical, experimental and/or
practical aspects of swarm intelligence. All articles are published both in print and in electronic
form. There are no page charges for publication. Swarm Intelligence is published quarterly.
The field of swarm intelligence deals with systems composed of many individuals that coordinate
using decentralized control and self-organization. In particular, it focuses on the collective
behaviors that result from the local interactions of the individuals with each other and with their
environment. It is a fast-growing field that encompasses the efforts of researchers in multiple
disciplines, ranging from ethology and social science to operations research and computer
engineering.
Swarm Intelligence will report on advances in the understanding and utilization of swarm
intelligence systems, that is, systems that are based on the principles of swarm intelligence. The
following subjects are of particular interest to the journal:
• modeling and analysis of collective biological systems such as social insect colonies, flocking
vertebrates, and human crowds as well as any other swarm intelligence systems;
• application of biological swarm intelligence models to real-world problems such as distributed
computing, data clustering, graph partitioning, optimization and decision making;
• theoretical and empirical research in ant colony optimization, particle swarm optimization,
swarm robotics, and other swarm intelligence algorithms.