多项式积分微分算子代数的广义权模的显式描述$\mathbb{I}_n$

IF 0.5 4区 数学 Q3 MATHEMATICS
V. V. Bavula, V. Bekkert, V. Futorny
{"title":"多项式积分微分算子代数的广义权模的显式描述$\\mathbb{I}_n$","authors":"V. V. Bavula, V. Bekkert, V. Futorny","doi":"10.4310/ajm.2021.v25.n5.a6","DOIUrl":null,"url":null,"abstract":"For the algebra $\\mathbb{I}_n = K {\\langle x_1, \\dotsc, x_n, \\partial_1, \\dotsc, \\partial_n, \\int_1, \\dotsc, \\int_n \\rangle}$ of polynomial integrodifferential operators over a field $K$ of characteristic zero, a classification of simple weight and generalized weight (left and right) $\\mathbb{I}_n$‑modules is given. It is proven that the category of weight $\\mathbb{I}_n$‑modules is semisimple. An explicit description of generalized weight $\\mathbb{I}_n$‑modules is given and using it a criterion is obtained for the problem of classification of indecomposable generalized weight $\\mathbb{I}_n$‑modules to be of finite representation type, tame or wild. In the tame case, a classification of indecomposable generalized weight $\\mathbb{I}_n$‑modules is given. In the wild case ‘natural‘ tame subcategories are considered with explicit description of indecomposable modules. For an arbitrary ring $R$, we introduce the concept of <i>absolutely prime</i> $R$‑module (a nonzero $R$‑module $M$ is absolutely prime if all nonzero subfactors of $M$ have the same annihilator). It is proven that every generalized weight $\\mathbb{I}_n$‑module is a unique sum of absolutely prime modules. It is also shown that every indecomposable generalized weight $\\mathbb{I}_n$‑module is equidimensional. A criterion is given for a generalized weight $\\mathbb{I}_n$‑module to be finitely generated.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explicit description of generalized weight modules of the algebra of polynomial integro-differential operators $\\\\mathbb{I}_n$\",\"authors\":\"V. V. Bavula, V. Bekkert, V. Futorny\",\"doi\":\"10.4310/ajm.2021.v25.n5.a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the algebra $\\\\mathbb{I}_n = K {\\\\langle x_1, \\\\dotsc, x_n, \\\\partial_1, \\\\dotsc, \\\\partial_n, \\\\int_1, \\\\dotsc, \\\\int_n \\\\rangle}$ of polynomial integrodifferential operators over a field $K$ of characteristic zero, a classification of simple weight and generalized weight (left and right) $\\\\mathbb{I}_n$‑modules is given. It is proven that the category of weight $\\\\mathbb{I}_n$‑modules is semisimple. An explicit description of generalized weight $\\\\mathbb{I}_n$‑modules is given and using it a criterion is obtained for the problem of classification of indecomposable generalized weight $\\\\mathbb{I}_n$‑modules to be of finite representation type, tame or wild. In the tame case, a classification of indecomposable generalized weight $\\\\mathbb{I}_n$‑modules is given. In the wild case ‘natural‘ tame subcategories are considered with explicit description of indecomposable modules. For an arbitrary ring $R$, we introduce the concept of <i>absolutely prime</i> $R$‑module (a nonzero $R$‑module $M$ is absolutely prime if all nonzero subfactors of $M$ have the same annihilator). It is proven that every generalized weight $\\\\mathbb{I}_n$‑module is a unique sum of absolutely prime modules. It is also shown that every indecomposable generalized weight $\\\\mathbb{I}_n$‑module is equidimensional. A criterion is given for a generalized weight $\\\\mathbb{I}_n$‑module to be finitely generated.\",\"PeriodicalId\":55452,\"journal\":{\"name\":\"Asian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/ajm.2021.v25.n5.a6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2021.v25.n5.a6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于特征为零的域$K$上多项式积分微分算子的代数$\mathbb{I}_n = K {\langle x_1, \dotsc, x_n, \partial_1, \dotsc, \partial_n, \int_1, \dotsc, \int_n \rangle}$,给出了简单权(左)和广义权(右)$\mathbb{I}_n$ -模的分类。证明了权重$\mathbb{I}_n$ -模的范畴是半简单的。给出了广义权$\mathbb{I}_n$ -模的显式描述,并利用它得到了不可分解广义权$\mathbb{I}_n$ -模的分类问题是有限表示型、驯服型或野生型的一个准则。在一般情况下,给出了不可分解广义权$\mathbb{I}_n$ -模的分类。在野生情况下,“自然”驯服子类别被认为具有不可分解模块的显式描述。对于任意环$R$,我们引入了绝对素数$R$ -模的概念(如果$M$的所有非零子因子具有相同的湮灭子,则非零$R$ -模$M$是绝对素数)。证明了每一个广义权$\mathbb{I}_n$ -模都是绝对素模的唯一和。还证明了每个不可分解广义权$\mathbb{I}_n$ -模都是等维的。给出了有限生成广义权重$\mathbb{I}_n$ -模块的准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explicit description of generalized weight modules of the algebra of polynomial integro-differential operators $\mathbb{I}_n$
For the algebra $\mathbb{I}_n = K {\langle x_1, \dotsc, x_n, \partial_1, \dotsc, \partial_n, \int_1, \dotsc, \int_n \rangle}$ of polynomial integrodifferential operators over a field $K$ of characteristic zero, a classification of simple weight and generalized weight (left and right) $\mathbb{I}_n$‑modules is given. It is proven that the category of weight $\mathbb{I}_n$‑modules is semisimple. An explicit description of generalized weight $\mathbb{I}_n$‑modules is given and using it a criterion is obtained for the problem of classification of indecomposable generalized weight $\mathbb{I}_n$‑modules to be of finite representation type, tame or wild. In the tame case, a classification of indecomposable generalized weight $\mathbb{I}_n$‑modules is given. In the wild case ‘natural‘ tame subcategories are considered with explicit description of indecomposable modules. For an arbitrary ring $R$, we introduce the concept of absolutely prime $R$‑module (a nonzero $R$‑module $M$ is absolutely prime if all nonzero subfactors of $M$ have the same annihilator). It is proven that every generalized weight $\mathbb{I}_n$‑module is a unique sum of absolutely prime modules. It is also shown that every indecomposable generalized weight $\mathbb{I}_n$‑module is equidimensional. A criterion is given for a generalized weight $\mathbb{I}_n$‑module to be finitely generated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信