具有加权齐次孤立奇点或方便非退化奇点的$\mathbb{Q}$-除数的Hodge滤波和Hodge理想

IF 0.5 4区 数学 Q3 MATHEMATICS
Mingyi Zhang
{"title":"具有加权齐次孤立奇点或方便非退化奇点的$\\mathbb{Q}$-除数的Hodge滤波和Hodge理想","authors":"Mingyi Zhang","doi":"10.4310/ajm.2021.v25.n5.a2","DOIUrl":null,"url":null,"abstract":"We give an explicit formula for the Hodge filtration on the $\\mathscr{D}_X$-module $\\mathcal{O}_X (*Z) f^{1-\\alpha}$ associated to the effective $\\mathbb{Q}$-divisor $D = \\alpha \\cdot Z$, where $0 \\lt \\alpha \\leq 1$ and $Z = (f = 0)$ is an irreducible hypersurface defined by $f$, a weighted homogeneous polynomial with an isolated singularity at the origin. In particular this gives a formula for the Hodge ideals of $D$. We deduce a formula for the generating level of the Hodge filtration, as well as further properties of Hodge ideals in this setting. We also extend the main theorem to the case when $f$ is a germ of holomorphic function that is convenient and has non-degenerate Newton boundary.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hodge filtration and Hodge ideals for $\\\\mathbb{Q}$-divisors with weighted homogeneous isolated singularities or convenient non-degenerate singularities\",\"authors\":\"Mingyi Zhang\",\"doi\":\"10.4310/ajm.2021.v25.n5.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give an explicit formula for the Hodge filtration on the $\\\\mathscr{D}_X$-module $\\\\mathcal{O}_X (*Z) f^{1-\\\\alpha}$ associated to the effective $\\\\mathbb{Q}$-divisor $D = \\\\alpha \\\\cdot Z$, where $0 \\\\lt \\\\alpha \\\\leq 1$ and $Z = (f = 0)$ is an irreducible hypersurface defined by $f$, a weighted homogeneous polynomial with an isolated singularity at the origin. In particular this gives a formula for the Hodge ideals of $D$. We deduce a formula for the generating level of the Hodge filtration, as well as further properties of Hodge ideals in this setting. We also extend the main theorem to the case when $f$ is a germ of holomorphic function that is convenient and has non-degenerate Newton boundary.\",\"PeriodicalId\":55452,\"journal\":{\"name\":\"Asian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/ajm.2021.v25.n5.a2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2021.v25.n5.a2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了与有效$\mathbb{Q}$ -因子$D = \alpha \cdot Z$相关的$\mathscr{D}_X$ -模$\mathcal{O}_X (*Z) f^{1-\alpha}$上的Hodge滤波的显式公式,其中$0 \lt \alpha \leq 1$和$Z = (f = 0)$是由$f$定义的不可约超曲面,一个在原点具有孤立奇点的加权齐次多项式。特别地,这给出了霍奇理想$D$的公式。我们推导出霍奇过滤产生水平的公式,以及在这种情况下霍奇理想的进一步特性。我们还将主要定理推广到$f$是方便且具有非简并牛顿边界的全纯函数的胚芽的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hodge filtration and Hodge ideals for $\mathbb{Q}$-divisors with weighted homogeneous isolated singularities or convenient non-degenerate singularities
We give an explicit formula for the Hodge filtration on the $\mathscr{D}_X$-module $\mathcal{O}_X (*Z) f^{1-\alpha}$ associated to the effective $\mathbb{Q}$-divisor $D = \alpha \cdot Z$, where $0 \lt \alpha \leq 1$ and $Z = (f = 0)$ is an irreducible hypersurface defined by $f$, a weighted homogeneous polynomial with an isolated singularity at the origin. In particular this gives a formula for the Hodge ideals of $D$. We deduce a formula for the generating level of the Hodge filtration, as well as further properties of Hodge ideals in this setting. We also extend the main theorem to the case when $f$ is a germ of holomorphic function that is convenient and has non-degenerate Newton boundary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信