平面环面上凸体的长度正交谱

IF 1.8 2区 数学 Q1 MATHEMATICS
Nguyen Viet Dang, Matthieu Léautaud, Gabriel Rivière
{"title":"平面环面上凸体的长度正交谱","authors":"Nguyen Viet Dang, Matthieu Léautaud, Gabriel Rivière","doi":"10.4310/cjm.2023.v11.n4.a3","DOIUrl":null,"url":null,"abstract":"In analogy with the study of Pollicott–Ruelle resonances on negatively curved manifolds, we define anisotropic Sobolev spaces that are well-adapted to the analysis of the geodesic vector field associated with any translation invariant Finsler metric on the torus $\\mathbb{T}^d$. Among several applications of this functional point of view, we study properties of geodesics that are orthogonal to two convex subsets of $\\mathbb{T}^d$ (i.e. projection of the boundaries of strictly convex bodies of $\\mathbb{R}^d$). Associated with the set of lengths of such orthogeodesics, we define a geometric Epstein function and prove its meromorphic continuation. We compute its residues in terms of intrinsic volumes of the convex sets. We also prove Poisson-type summation formulae relating the set of lengths of orthogeodesics and the spectrum of magnetic Laplacians.","PeriodicalId":48573,"journal":{"name":"Cambridge Journal of Mathematics","volume":"194 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Length orthospectrum of convex bodies on flat tori\",\"authors\":\"Nguyen Viet Dang, Matthieu Léautaud, Gabriel Rivière\",\"doi\":\"10.4310/cjm.2023.v11.n4.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In analogy with the study of Pollicott–Ruelle resonances on negatively curved manifolds, we define anisotropic Sobolev spaces that are well-adapted to the analysis of the geodesic vector field associated with any translation invariant Finsler metric on the torus $\\\\mathbb{T}^d$. Among several applications of this functional point of view, we study properties of geodesics that are orthogonal to two convex subsets of $\\\\mathbb{T}^d$ (i.e. projection of the boundaries of strictly convex bodies of $\\\\mathbb{R}^d$). Associated with the set of lengths of such orthogeodesics, we define a geometric Epstein function and prove its meromorphic continuation. We compute its residues in terms of intrinsic volumes of the convex sets. We also prove Poisson-type summation formulae relating the set of lengths of orthogeodesics and the spectrum of magnetic Laplacians.\",\"PeriodicalId\":48573,\"journal\":{\"name\":\"Cambridge Journal of Mathematics\",\"volume\":\"194 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cambridge Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cjm.2023.v11.n4.a3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2023.v11.n4.a3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

与负弯曲流形上pollicot - ruelle共振的研究类似,我们定义了各向异性Sobolev空间,该空间很好地适应于环面上与任意平移不变Finsler度量相关的测地向量场的分析。在这一泛函观点的几个应用中,我们研究了与$\mathbb{T}^d$的两个凸子集正交的测大地线的性质(即$\mathbb{R}^d$的严格凸体的边界的投影)。结合这些正交测地线的长度集,我们定义了一个几何Epstein函数,并证明了它的亚纯延拓。我们用凸集的内禀体积来计算它的残数。我们还证明了关于正交测地线长度集和磁拉普拉斯谱的泊松型求和公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Length orthospectrum of convex bodies on flat tori
In analogy with the study of Pollicott–Ruelle resonances on negatively curved manifolds, we define anisotropic Sobolev spaces that are well-adapted to the analysis of the geodesic vector field associated with any translation invariant Finsler metric on the torus $\mathbb{T}^d$. Among several applications of this functional point of view, we study properties of geodesics that are orthogonal to two convex subsets of $\mathbb{T}^d$ (i.e. projection of the boundaries of strictly convex bodies of $\mathbb{R}^d$). Associated with the set of lengths of such orthogeodesics, we define a geometric Epstein function and prove its meromorphic continuation. We compute its residues in terms of intrinsic volumes of the convex sets. We also prove Poisson-type summation formulae relating the set of lengths of orthogeodesics and the spectrum of magnetic Laplacians.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信