Haiyang Han, Theoni Alexoudi, Chris Vagionas, Nikos Pleros, Nikos Hardavellas
{"title":"一种实用的多核处理器MWSR/R-SWMR NoC混合共享光缓存","authors":"Haiyang Han, Theoni Alexoudi, Chris Vagionas, Nikos Pleros, Nikos Hardavellas","doi":"https://dl.acm.org/doi/10.1145/3531012","DOIUrl":null,"url":null,"abstract":"<p>Conventional electronic memory hierarchies are intrinsically limited in their ability to overcome the memory wall due to scaling constraints. Optical caches and interconnects can mitigate these constraints, and enable processors to reach performance and energy efficiency unattainable by purely electronic means. However, the promised benefits cannot be realized through a simple replacement process; to reach its full potential, the architecture needs to be holistically redesigned. This article proposes Pho$, an opto-electronic memory hierarchy architecture for multicores. Pho$ replaces conventional core-private electronic caches with a large shared optical L1 built with optical SRAMs. The shared optical cache is supported by Pho$Net, a novel hybrid MWSR/R-SWMR optical NoC that provides low-latency and high-bandwidth communication between the electronic cores and the shared optical L1 at low optical loss. Pho$Net’s unique network arbitration protocol seamlessly co-arbitrates the request and reply sub-networks and facilitates cache requests and replies that optimize for the common case of cache hits. Through Pho$ we solve the problems that render previous designs impractical. Our results show that Pho$ achieves on average 1.41× performance speedup (3.89× max) and 31% lower energy-delay product (90% max) against conventional designs. Moreover, the Pho$Net optical NoC for core-cache communication consumes 70% less power compared to directly applying previously proposed optical NoC architectures.</p>","PeriodicalId":50924,"journal":{"name":"ACM Journal on Emerging Technologies in Computing Systems","volume":"24 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Practical Shared Optical Cache With Hybrid MWSR/R-SWMR NoC for Multicore Processors\",\"authors\":\"Haiyang Han, Theoni Alexoudi, Chris Vagionas, Nikos Pleros, Nikos Hardavellas\",\"doi\":\"https://dl.acm.org/doi/10.1145/3531012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Conventional electronic memory hierarchies are intrinsically limited in their ability to overcome the memory wall due to scaling constraints. Optical caches and interconnects can mitigate these constraints, and enable processors to reach performance and energy efficiency unattainable by purely electronic means. However, the promised benefits cannot be realized through a simple replacement process; to reach its full potential, the architecture needs to be holistically redesigned. This article proposes Pho$, an opto-electronic memory hierarchy architecture for multicores. Pho$ replaces conventional core-private electronic caches with a large shared optical L1 built with optical SRAMs. The shared optical cache is supported by Pho$Net, a novel hybrid MWSR/R-SWMR optical NoC that provides low-latency and high-bandwidth communication between the electronic cores and the shared optical L1 at low optical loss. Pho$Net’s unique network arbitration protocol seamlessly co-arbitrates the request and reply sub-networks and facilitates cache requests and replies that optimize for the common case of cache hits. Through Pho$ we solve the problems that render previous designs impractical. Our results show that Pho$ achieves on average 1.41× performance speedup (3.89× max) and 31% lower energy-delay product (90% max) against conventional designs. Moreover, the Pho$Net optical NoC for core-cache communication consumes 70% less power compared to directly applying previously proposed optical NoC architectures.</p>\",\"PeriodicalId\":50924,\"journal\":{\"name\":\"ACM Journal on Emerging Technologies in Computing Systems\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Journal on Emerging Technologies in Computing Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3531012\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Journal on Emerging Technologies in Computing Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3531012","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A Practical Shared Optical Cache With Hybrid MWSR/R-SWMR NoC for Multicore Processors
Conventional electronic memory hierarchies are intrinsically limited in their ability to overcome the memory wall due to scaling constraints. Optical caches and interconnects can mitigate these constraints, and enable processors to reach performance and energy efficiency unattainable by purely electronic means. However, the promised benefits cannot be realized through a simple replacement process; to reach its full potential, the architecture needs to be holistically redesigned. This article proposes Pho$, an opto-electronic memory hierarchy architecture for multicores. Pho$ replaces conventional core-private electronic caches with a large shared optical L1 built with optical SRAMs. The shared optical cache is supported by Pho$Net, a novel hybrid MWSR/R-SWMR optical NoC that provides low-latency and high-bandwidth communication between the electronic cores and the shared optical L1 at low optical loss. Pho$Net’s unique network arbitration protocol seamlessly co-arbitrates the request and reply sub-networks and facilitates cache requests and replies that optimize for the common case of cache hits. Through Pho$ we solve the problems that render previous designs impractical. Our results show that Pho$ achieves on average 1.41× performance speedup (3.89× max) and 31% lower energy-delay product (90% max) against conventional designs. Moreover, the Pho$Net optical NoC for core-cache communication consumes 70% less power compared to directly applying previously proposed optical NoC architectures.
期刊介绍:
The Journal of Emerging Technologies in Computing Systems invites submissions of original technical papers describing research and development in emerging technologies in computing systems. Major economic and technical challenges are expected to impede the continued scaling of semiconductor devices. This has resulted in the search for alternate mechanical, biological/biochemical, nanoscale electronic, asynchronous and quantum computing and sensor technologies. As the underlying nanotechnologies continue to evolve in the labs of chemists, physicists, and biologists, it has become imperative for computer scientists and engineers to translate the potential of the basic building blocks (analogous to the transistor) emerging from these labs into information systems. Their design will face multiple challenges ranging from the inherent (un)reliability due to the self-assembly nature of the fabrication processes for nanotechnologies, from the complexity due to the sheer volume of nanodevices that will have to be integrated for complex functionality, and from the need to integrate these new nanotechnologies with silicon devices in the same system.
The journal provides comprehensive coverage of innovative work in the specification, design analysis, simulation, verification, testing, and evaluation of computing systems constructed out of emerging technologies and advanced semiconductors